
Load Reduction in the KAD Peer-to-Peer

System

Moritz Steiner1,2, Wolfgang Effelsberg2, Taoufik En-Najjary1, and Ernst
Biersack1

1 Institut Eurecom, Sophia–Antipolis, France
steiner,ennajjar,erbi@eurecom.fr
2 University of Mannheim Germany

effelsberg,steiner@informatik.uni-mannheim.de

Abstract. Distributed hash tables (DHTs) have been actively studied
in literature and many different proposals have been made on how to
organize peers in a DHT. However, very few DHTs have been imple-
mented in real systems and deployed on a large scale. One exception is
kad, a DHT based on Kademlia, which is part of eDonkey, a peer-to-
peer file sharing system with several million simultaneous users. In this
paper, we investigate the publishing and searching mechanisms in kad.
We designed and implemented Mistral, a content spy that can capture
up to ten million references to published content in several hours. At
first evaluation, we notice that publishing new content in a kad system
is much more expensive than searching and retrieving existing content.
Indeed, measurements show that of all the Internet traffic generated by
kad-based peer-to-peer networks, 90% is for publishing and 10% for re-
trieving existing files. Moreover, the most frequently published keywords
are meaningless stopwords. We propose to add a stopword filtering mech-
anism to the search and publish procedures of kad-based peer-to-peer
systems.

1 Introduction

In recent years, Internet traffic from peer-to-peer applications has by far exceeded
all other kinds of Internet traffic, including WWW access [8]. kad-based peer-
to-peer systems have become very popular, counting several millions users [19].
Thus, it is important to investigate the performance of kad-based search and
publishing, and to suggest improvements to the kad mechanisms.

kad is a Kademlia-based peer-to-peer routing system. Kademlia [10] is a
distributed hash table that is implemented in several popular peer-to-peer ap-
plications, such as Overnet [12], eMule [7] and aMule [1]. Each kad node has a
global identifier, referred to as kad ID, which is 128 bit long and is randomly
generated using a cryptographic hash function. Routing in kad is based on prefix
matching using a XOR-metric.

The kad system is designed to prevent free-riding, anyone who retrieves a file
from kad also becomes a server for that file, and he publishes this fact to the rest

of the world. Thus, new publications are a consequence of successful retrievals.
To investigate the publishing process of kad, we designed and implemented our
own content spy, Mistral, that will be described in section 3.

We first launched Mistral on the entire kad ID space. The load on our
machine was too large, and not all the queries could be satisfied and recorded.
Since spying on the entire kad ID space was not possible, we spied on 20 different
8-bit zones (such a zone contains the peers having the 8 first bit in common)
of the kad ID space during 24 hours3, which allowed us to obtain a number of
original results. We observed for a single 8-bit zone :

– More than 1.5 million different references to published files,
– More than 40,000 different keywords were published and only 1,100 searched,
– Publishing generates ten times more messages than searching. Moreover,

publish messages are ten times larger than publish messages.
– The popularity of the keywords is not at all uniformly distributed, as it was

also observed for other DHTs [3, 17].
– The most popular keywords are meaningless stopwords.

These results led us to look into means how to effectively reduce the publish-
ing overhead without reducing the retrieval success rate of the kad system.
From the indexing and retrieval literature it is well known that eliminating stop-

words helps to reduce unnecessary searches. Stopwords are very common words
of a language that do not contribute much to the power of an index; examples are
“the”, “a” or “what” that occur frequently without adding much meaning. When
a full-text index is built, these stopwords are usually excluded. For example, in
the English language, 26 stop words make up 33% of a text.

All DHT-based peer-to-peer systems index files based on the file names, and
so does kad. However, kad’s only mechanism related to stopwords is to leave
out all one- and two-letter words when creating an index for a file name. This
does not seem to be an efficient solution. As a consequence, we decided to

– Measure the performance of a kad-based peer-to-peer system with Mistral,
– Provide a specific set of stopwords and exclude these stopwords from the

index creation and search process,

Our paper is structured as follows. Section 2 presents a short overview of
the inner workings of kad. In Section 3, we introduce our kad content spy. In
Section 4 we analyze the performance of kad without and with stopwords. In
Section 5 we discuss related work on stop words in peer-to-peer systems. Section
6 concludes the paper.

2 Background on KAD

kad is a Kademlia-based [10] peer-to-peer DHT routing protocol implemented by
several peer-to-peer applications such as Overnet [12], eMule [7], and aMule [1].

3 This is the minimum observation time required to catch also rare keywords, since
the typical keyword republishing interval is 24 hours.

eMule and aMule, two open–source projects, have the largest number of
simultaneously connected users since these clients rely on the eDonkey network,
which is a very popular peer-to-peer system for file sharing. Recent versions of
these clients implement the kad protocol.

Similarly to other DHTs like Chord [20], Can [15], or Pastry [16], each kad

node has a global identifier, referred to as kad ID, which is 128 bit long and is
randomly generated using a cryptographic hash function. The kad ID is gener-
ated when the client application is run for the first time and is then permanently
stored. The kad ID stays unchanged on subsequent join and leaves of the peer,
until the user deletes the application or its preferences file.

2.1 Routing

Routing in kad is based on prefix-matching: Node a forwards a query, destined
to a node b, to the node in his routing table that has the smallest XOR-distance4.
The fact that the XOR metric is symmetric is an advantage compared to other
systems, e.g. Chord, since in kad, if a is close to b, then b is also close to a.

The entries in the routing tables are called contacts and are organized as an
unbalanced routing tree: a peer P stores only a few contacts to peers that are
far away in the overlay but increasingly more contacts to peers as we get closer
P . For details of the implementation see [21]. For a given prefix distance, P
knows not only a single peer but a bucket of contacts. Each bucket can contain
up to ten contacts, in order to better cope with peer churn without the need to
periodically check if the contacts are still online.

Routing to a specific kad ID is done in an iterative way, which means that
each peer on the way to the destination returns the coordinate of the next hop
to the sending node. While iterative routing experiences a slightly higher delay
than recursive routing, it offers increased robustness against message loss. The
useful side effect is that it greatly simplifies crawling the kad network.

2.2 Publishing

A key in a peer-to-peer system is an identifier used to retrieve information.
kad distinguishes between two different keys:

– A source key that identifies the content of a file and is computed by hashing
the content of a file.

– A keyword key that classifies the content of a file and is computed by
hashing a single token from the name of a file.

In kad each key is not published just on a single peer that is numerically closest
to that key, but on 10 different peers whose kad ID agrees at least in the first
8-bits with the key. This zone around a key is called the tolerance zone.

4 The XOR-distance d(a, b) between nodes a and b is d(a, b) = a ⊕ b. It is calculated
bitwise on the kad IDs of the two nodes, e.g. the distance between a = 1011 and
b = 0111 is d(a, b) = 1011 ⊕ 0111 = 1100.

Peer 11111

Peer 00001

Peer 00110

Peer 11001

00010 keyword

the

source 00111
00111 source

peer 11111

11000 keyword

matrix

source 00111

the matrix

00111

the 00010

matrix 11000

File

Source

Keyword

Keyword

Fig. 1. Sketch of the 2-level publishing scheme

Figure 1 shows an example of the publishing process. A peer wants to publish
a file with the name the matrix. This filename will result in two keywords, “the”
and “matrix”. All relevant references to the original file are generated, such as
the source key and the the keywords with the attached metadata. Next, the
keywords “the” and “matrix” are published, pointing to the source key. Finally,
the source is published, with pointer to the publishing peer.

Keys are periodically republished: source keys every 5 hours and, keyword

keys every 24 hours. Analogously, a peer on which a source key or keyword key
was published will delete the information after 5 and 24 hours respectively. Re-
publishing is done exactly the same way as publishing.

3 Spying for Content with Mistral

In this section we explain how to get an overview of the content in kad using
our content spy Mistral. It is based on the same principle as the sybil attack [6,
5, 4]. We introduce a large number of our own peers, the sybils, into the network,
all controlled by one machine. Positioned in a strategic way in the kad space
but physically all running on the same machine, the sybils can gain control over
a fraction of the network or even over the whole network. The fact that all sybils
run on the same machine has the advantage that data collection is much easier.

We insert a large number of sybil peers into the network and propagate
information about them in the routing tables of the real peers. To do so, we first
crawl kad using Blizzard [19] to learn about the peers present in the network.
Next, we send hello messages to the peers we have learned about. A hello

message includes the kad ID of the sender; we can choose it freely. The first 24
bit are chosen at random, while the 96 remaining bits are fixed.

The routing queries reaching the sybils are always answered with other sybils.
The returned kad ID is closer to the target included in the query than the
receiver of the query, thus the querying peer has always the impression of ap-
proaching the target. Once the requestor gets close enough to the target, it
queries a sybil for the content itself and not for any closer peers. Our sybil stores
the search request and returns a fake source entry. This source entry points to
our machine. As a consequence, the real peer tries to start to download which is
not successful.

Not only routing and search requests are hitting our machine but also re-
quests to publish. As stated above, these are especially interesting since they are
much more frequent than search requests. Whereas search requests are always
launched by a human, publish requests are automatically and regularly launched
by the kad clients. Also, the publish information is richer than the search re-
quests: it includes the full file name, the kad ID of the source and a significant
amount of metadata on the file. As explained above, the filename is tokenized
and published on the hash of each of its tokens (keywords). The answer to a
publish request is the load of the peer addressed. We always answer with a very
low load, thus we attract more and more publish requests to our sybils.

An 8-bit zone contains the peers whose kad ID agrees in the first 8 bits,
thus each zone can theoretically contain 2120 hash values. We actually observe
between 12,000 and 25,000 peers per zone. The entire kad network contains 256
8-bit zones and between 3 and 5 million peers. It is possible to spy on one zone
of the kad network only by restricting the returned kad IDs to a certain prefix.
Into a zone we can insert 65,356 distinct sybils to be sure to catch at least one
of the ten publish messages for a keyword or a source and at least one of the
three search messages that are sent per user-initiated search.

4 Performance Analysis

Let us first quantify the resources required to introduce sybil peers in the entire
kad ID space using Mistral. Three millions online peers that have to be crawled
regularly with Blizzard, at least every two hours, to cope with the churn in the
system. Each crawl accounts for 4 GByte of traffic. Afterward, the sybils must
be announced to those peers. Assume that we only announce to each peer the
256 closest sybils: one announcement costs 50 bytes plus another 50 bytes for the
ack; that accounts for 3, 000, 000∗256∗2∗50 bytes = 72 GByte. Announcements
must be done periodically. On average, sybils announcement generates about
40 MBytes/s of traffic. Moreover, the sybils will also attract search and publish
messages. That clearly shows that from the bandwidth point of view it is not
possible, with our resources, to place sybils in the entire network.

Since spying on the entire kad ID space was not possible, we spied on 20
different 8-bit zones of the kad ID space during 24 hours. During this time, on
average, 4.3 million publish messages, 350,000 search messages and 8.7 million

route messages were recorded. The publish messages contained 26,500 different
keywords per zone, most of them in latin letters, and 315,000 distinct sources,
i.e., 315,000 distinct files. Among the 65,356 sybils we introduced, on the average
62,000 were hit by search or publish requests.

The hash values of the search requests, keywords publish requests and the
keywords themselves are uniformly distributed over the kad ID space. The
same is true for the source search requests and source publish requests. Also we
know from our earlier measurements with Blizzard that the peers are uniformly
distributed as well on the kad ID space [19].

This property allows us to estimate the total number S of sources (files) in
the system by simply counting the number of sources in a zone. Let Spart be the

number of sources counted in an 8–bit zone, and Ŝ := 256 ∗ Spart the estimate
for the total number of sources in the kad system. Use Chernoff bounds (see
[11] Chapter 4) we tightly bound the estimation error. Indeed, Prob(|S − Ŝ| <
45000) ≥ 0.99, which means that our estimate Ŝ has most likely an error of less
than 3% for a total number of at least 80 million sources.

Our measurements show that there are ten times more publish messages than
search messages. Moreover a publish message is 10 times bigger than a search
message since it contains not only a keyword but also metadata describing the
published content. Thus we focus on improving the performance of kad by
reducing the number of publish actions.

The number of times a keyword publication is observed versus the ranking of
the keyword for the 8-bit zones 0xe3 and 0x8e are shown in Figure 2 in log-log
scale. Rank 1 is the most popular keyword. If each curve were to be a straight
line, then the popularity of keywords would follow a Zipf-like distribution (i.e.
the probability of seeing a publication message for the i’th most popular keyword
is proportional to 1/iα [18]). We used Matlab’s curve-fitting tools to estimate the
value of α, for the curve. The value of α is the same for all zones: α ≈ −1.63. It is
near the most popular keywords where the zones differ by an order of magnitude.

We picked two zones as examples. The zone 0xe3 contains the keyword “the”
whereas the zone 0x8e does not contain any popular keywords. The keyword
“the” in zone 0xe3 accounts for 30% of the total load in the zone. In total
1,518,717 publish requests with the keyword “the” hit our sybils in 24 hours.
Whereas, in zone 0x8e, the most popular keyword accounts only for 5% of the
load. In this zone the most popular keywords are nearly equally popular.

Not only the zone as a whole benefits from not publishing stopwords, but
especially single peers close to the stopwords’ hashes. Qiao and Bustamante [14]
nicely describe the load balancing mechanism of Overnet, which relies on the
same mechanisms as kad. They state that peers close to hot spots are experienc-
ing only 50% more overhead than other peers. However, all their measurements
were done with search requests only, they only show how widely a keyword is
spread over the hash space. Our measurements with Mistral however show that
the publish messages always hit the machines close to the hash of the popular
keyword first. Only if these machines are overloaded the publisher tries to con-
tact machines more distant ones from the hash of the keyword. Figure 3 shows

10
0

10
1

10
2

10
3

10
4

10
5

10
0

10
2

10
4

10
6

10
8

rank

#p
ub

lic
at

io
ns

zone 0xe3
zone 0x8e

~ x−1.63

Fig. 2. The number of publications per keyword for two different zones.

the number of queries that hit our ten most loaded sybils in the two zones 0xe3
and 0x8e. The popular keyword “the” in zone 0xe3 is mainly responsible for the
high load on these syblis. The sybils with a lower rank have the same load in
both zones.

2 4 6 8 10
0

2

4

6

8

10

12
x 10

4

rank

qu

er
ie

s

zone 0xe3
zone 0x8e

Fig. 3. The number of queries received by the sybils for two different zones.

The popular keywords that make the difference between the zones are all
stopwords. Table 1(a) shows specific stopwords for kad file names which augment
the set believed to be used in Google (Table 1(b)). We propose to use the union
of Table 1(a) and Table 1(b) as stopwords. The number of peers on which a

stopword is published as well as the number of files containing the stopword
have been determined by first crawling the peers around the stopword with
Blizzard and then by querying all those peers for the stopword. Excluding these
words from the publishing process does not affect the usability of the system, as
a user can still specify the filetype (documents, music, movies, etc.) he is looking
for.

(a) The stopwords for kad

stopword # peers # files

avi 491 8101
xvid 479 13683

192kbps 437 8005
dvdscreener 413 12343

screener 433 7377
jpg 456 10529
pro 303 8378
mp3 482 12019
ac3 424 8045

video 468 10478
music 335 8558
rmvb 454 13643
dvd 450 10194

dvdrip 560 13235
english 388 7849
french 377 9468

dreirad 28 30

(b) The Google stopwords

stopword # peers # files

about 513 7608
are 330 7282
com 463 11550
for 549 12303

from 399 8345
how 542 8282
that 423 9148
the 487 14502
this 452 8510
what 394 7710
when 294 7241
where 431 9445
who 302 7742
will 458 7976
with 338 8543
www 391 11203
and 577 13706

Table 1. The Google and kad stopwords with more than two letters, the number of
peers storing them and the number of files containing them. For comparison the rare
keyword “dreirad” is shown.

Unlike for the keywords, the popularity of the sources is much better balanced
inside the zones and between the zones. The most popular source accounts only
for 0.1% of the source publish traffic.

5 Related Work

Stopwords have been used for decades in indexing and retrieval; we thus concen-
trate on the use of stopwords in the context of peer-to-peer systems.

In [13] and [9] the authors describe an indexing system for the World Wide
Web based on a peer-to-peer system. Their idea is that peer-to-peer systems
should be able to build good search indexes in a distributed fashion, enabling
Web searches in a much more scalable way than traditional (centrally coor-
dinated distributed) search engines. These papers introduces the concept of

“Highly Discriminative Keys” (HDKs): these are a selection of “rare” keys oc-
curring in a text document. Based on these HDKs, they build a peer-to-peer
index which they then evaluate experimentally. They use up to 120,000 Reuters
news articles; and then apply 250 English stopwords and a stemmer when they
construct a search term from the full text. This is different from our approach:
we do not intend to support full-text searches over the entire document, we are
just trying to enhance the indexing for file names in peer-to-peer systems.

The authors of [2] present a general four-layer architecture for a peer-to-peer-
based information retrieval system that is used to build a scalable index. They
illustrate the functionality of their approach by describing how a concrete index-
ing system could be built with those four layers; in this context, stopwords are
used to improve the precision on layer 4. Again, this architecture is more general,
and aims at building a full-text search engine. Their system is not implemented,
and no performance measurements are presented in the paper.

In [22], another approach for scalable Web search is proposed. The authors
use a technique developed by R. Fagin to merge the result sets of single-term
queries more efficiently than by just loading all of them onto a single site. Fagin’s
idea is based on sorted inverted lists that are efficiently merged across sites. The
authors exclude stopwords in their searches, without specifying details. Experi-
mental results with 120 million Web pages show a low communication overhead
for multi-site queries based on Fagin’s idea. However, it is not quite clear where
peer-to-peer technology is used, and again, unlike in our system, the purpose is
the construction of an efficient full-text index.

Detailed measurement results from a study of Gnutella and Overnet (a pre-
cursor of kad) are presented in the paper of Qiao and Bustamante [14]. Among
other things, the authors evaluate the performance of queries in Overnet. Of
particular interest to our work are their results on queries to popular keywords
(stopwords are very popular keywords). They conclude that these are handled
well by Overnet because it distributes the query load to multiple peers whose
hash IDs are “close enough” to the hash of the keyword: the more popular the
keyword, the broader the hash range. Our measurements contradicted this con-
clusion: first, considerable overhead is generated by initially querying the peer
with the closest hash to the popular keyword who answers with “too busy”; this
goes on with an iteratively less precise hash value until a peer is found who is
able to answer. Thus, a considerable additional load is imposed on the peers
next to popular keywords. Second, we not only consider the querying but also
the publishing load, which is much higher.

6 Conclusion

We have reported our findings obtained from spying on kad, the largest currently
deployed DHT. We developed Mistral, a content spy, that allows us to gain an
overview of the content published and searched in kad. Our observations show
that the publication process in kad is responsible for more than 90% of the total
network traffic. Moreover we note that the load is highly unbalanced between the

peers. The peaks of load are due to very popular keywords that are most often
meaningless stopwords. We have then proposed to add a stopword exclusion step
into all kad based peer-to-peer systems. Our results show how this will equalize
the load on the peers storing the keywords, and, as a consequence, improve the
overall system performance. There is no draw back to stopword exclusion since
stopwords do not carry much meaning.

References

1. A-Mule, http://www.amule.org/.
2. K. Aberer, F. Klemm, M. Rajman, and J. Wu, “An architecture for peer-to-peer

information retrieval”, In Workshop on Peer-to-Peer Information Retrieval, 2004.
3. A. T. Clements, D. R. K. Ports, and D. R. Karger, “Arpeggio: Metadata Searching

and Content Sharing with Chord”, In International Workshop on Peer-To-Peer
Systems, 2005.

4. G. Danezis, C. Lesniewski-Laas, M. Kaashoek, and R. Anderson, “Sybil-resistant
DHT routing”, In European Symposium On Research In Computer Security,
Springer, 2005.

5. J. Dinger and H. Hartenstein, “Defending the Sybil Attack in P2P Networks: Tax-
onomy, Challenges, and a Proposal for Self-Registration”, In ARES ’06: Proceed-
ings of the First International Conference on Availability, Reliability and Security
(ARES’06), pp. 756–763, 2006.

6. J. R. Douceur, “The Sybil Attack”, In Proceedings of the 1st International Work-
shop on Peer-to-Peer Systems (IPTPS), LNCS, pp. 251–260, March 2002.

7. E-Mule, http://www.emule-project.net/.
8. F. L. Fessant, S. B. Handurukande, A.-M. Kermarrec, and L. Massoulié, “Cluster-

ing in Peer-to-Peer File Sharing Workloads”, In IPTPS ’04: The 3rd International
Workshop on Peer-to-Peer Systems, October 2004.

9. F. Klemm, A. Datta, and K. Aberer, “A Query-Adaptive Partial Distributed
Hash Table for Peer-to-Peer Systems”, In Current Trends in Database Technology
- EDBT 2004 Workshops, pp. 506–515, 2004.

10. P. Maymounkov and D. Mazieres, “Kademlia: A Peer-to-peer Informatiion System
Based on the XOR Metric”, In Proceedings of the 1st International Workshop on
Peer-to-Peer Systems (IPTPS), pp. 53–65, March 2002.

11. M. Mitzenmacher and E. Upfal, Probability and Computing: Randomized Algo-
rithms and Probabilistic Analysis, Cambridge Press, 2005.

12. Overnet, http://www.overnet.org/.
13. I. Podnar, M. Rajman, T. Luu, F. Klemm, and K. Aberer, “Beyond Term Indexing:

A P2P Framework forWeb Information Retrieval”, Informatica, 30:153–161, 2006.
14. Y. Qiao and F. E. Bustamante, “Structured and Unstructured Overlays Under the

Microscope - A Measurement-based View of Two P2P Systems That People Use.”,
In Proceedings of the 2006 USENIX Annual Technical Conference, 2006.

15. S. Ratnasamy, M. Handley, R. Karp, and S. Shenker, “A Scalable Content-
Addressable Network”, In Proc. ACM SIGCOMM, 2001.

16. A. Rowstron and P. Druschel, “Pastry: Scalable, Distributed Object Location
and Routing for Large-scale Peer-to-peer Systems”, In Proceedings of Middleware,
Heidelberg, Germany, November 2001.

17. R. Siebes, “pNear: combining Content Clustering and Distributed Hash Tables”,
In Proceedings of the IEEE - p2pkm.org, 2005.

18. K. Sripanidkulchai, “The popularity of Gnutella queries and its implications on
scalability”, In Proceedings of O’Reilly’s OpenP2P, 2001.

19. M. Steiner, E. W. Biersack, and T. En-Najjary, “Actively Monitoring Peers in
Kad”, In Proceedings of the 6th International Workshop on Peer-to-Peer Systems
(IPTPS’07), 2007.

20. I. Stoica, R. Morris, D. Karger, M. Kaashoek, and H. Balakrishnan, “Chord: A
scalable Peer-to-peer lookup service for Internet applications”, In Proceedings of
SIGCOMM, pp. 149–160, San Diego, CA, USA, 2001, ACM Press.

21. D. Stutzbach and R. Rejaie, “Improving Lookup Performance over a Widely-
Deployed DHT”, In Proc. Infocom 06, April 2006.

22. T. Suel, C. Mathur, J.-W. Wu, J. Zhang, A. Delis, M. Kharrazi, X. Long, and
K. Shanmugasundaram, “ODISSEA: A Peer-to-Peer Architecture for Scalable Web
Search and Information Retrieval”, TR-CIS-2003-01, Department of Computer and
Information Science, Polytechnic University, Brooklyn, NY, June 2003.

