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Abstract

Voronoi diagrams and Delaunay triangulations
have proved to be efficient solutions to numerous
theoretical problems. They appear as an appeal-
ing structure for distributed overlay networks when
entities are characterized by a position in a d-
dimensional space. In this paper, we present some
algorithms aiming to maintain an overlay network
matching the Delaunay triangulation of the partic-
ipating entities. We consider that entities are char-
acterized by a position in a d-dimensional space.
We first study the insertion of a new entity, then
we present the deletion of an entity.

Keywords: Distributed Computing, Computa-
tional Geometry, Peer-to-Peer Systems

1 Introduction

Study Context In shared virtual reality appli-
cations, entities are characterized by a position in
a virtual space. As entities interact according to
their virtual proximity, the application should en-
sure that each entity is aware of all entities within
its virtual surrounding. Some fully decentralized
systems [1, 12, 13] intend to create two-dimensional
scalable virtual worlds through an overlay network
specifically designed to achieve this end.

Building an overlay network based on a Delaunay
triangulation [12] seems a convincing approach. As
depicted in Figure 1, a Delaunay triangulation [7]

links two entities when their Voronoi regions share a
boundary [3, 19]. A Voronoi diagram [23] of a set of
entities in an euclidean space tessellates the whole
space. So, any subspace S of a virtual world can
be monitored by the entities whose Voronoi region
overlaps S. Hence, an entity e can be notified of
any intrusion within its area of interest S(e) if it
knows all entities monitoring S(e) [12].

Figure 1: Delaunay triangulation and Voronoi dia-
gram (dashed lines) in two-dimensional space

We initially purpose to conceive a three-
dimensional virtual reality system based on a dis-
tributed Delaunay-based overlay network.

Related Motivations In network positioning
systems [6, 18, 20], each host is characterized by a
position in a d−dimensional space. In most cases, it
is possible to predict the network distance between
two hosts by computing the distance between their



respective positions.
A claimed application is an overlay application-

layer multicast infrastructure for multimedia
streaming systems [25]. The idea is to build a mul-
ticast tree linking preferentially hosts that are close
in the space. As the euclidean minimum spanning
tree is a subgraph of a Delaunay triangulation [21],
a Delaunay-based overlay network could be an ap-
pealing structure for such distributed systems.

Moreover, relevant cluster structures are well re-
flected by the Voronoi diagrams, which provide ef-
ficient solutions to both partitional and hierarchi-
cal clustering [14]. These properties could be used
by latency-based distributed content delivery net-
works [22]. The structure could ease not only the
detection of a group of close hosts, but also the
selection of an accurate place for replicas.

Our secondary purpose is to conceive a dis-
tributed Delaunay-based overlay structure from
network positions in d-dimensional spaces.

Contributions Previous studies on Delaunay-
based overlay in dynamic distributed systems [2, 16]
rely on an angular feature which is specific to two-
dimensional spaces. In [15], an overlay based on
a Delaunay triangulation is constructed on a ad-
hoc network, but some features of wireless proto-
cols ease the detection of neighbors and the algo-
rithms focus on two-dimensional space. Therefore,
these algorithms can not be applied to higher di-
mensional spaces.

We design an overlay network matching the De-
launay triangulation of the participating entities in
a d-dimensional space. The Section 3 is devoted to
the description of the self-organizing algorithm for
entity insertion. The entity deletion algorithm is
presented in Section 4.

2 Model and Definitions

An entity is a process having communication capa-
bilities and running on a end user’s computer. We
assume that unpredictable failures are detected in a
reasonable time. The entities are able to exchange
messages through reliable bidirectional communi-

cation links. Each entity is characterized by a po-
sition in a d−dimensional space and a unique net-
work identifier allowing any other process to con-
tact it. A connection occurs between two entities
when both entities store their respective network
identifier. The set of entities connected to an en-
tity e at time t is denoted K(e, t). The system at
time t is modeled by a graph G(t) = (V (t), E(t))
where V (t) is the set of entities and E(t) is the set
of connections.

The Delaunay triangulation of V (t), noted
DT (t), links entities into non-overlapping
d−simplices such that the circum-hypersphere
of each d−simplex contains none of the entities
in its interior. We would like to ensure that
∀t, E(t) = DT (t).

The hypersphere which passes through all enti-
ties of a d−simplex T is noted C(T ). An entity z is
inside C(eo, e1 . . . ed) if:∣∣∣∣∣∣∣∣∣∣

e0[1] . . . e0[d] e0[1]2 + . . . + e0[d]2 1
e1[1] . . . e1[d] e1[1]2 + . . . + e1[d]2 1

...
...

...
ed[1] . . . ed[d] ed[1]2 + . . . + ed[d]2 1
z[1] . . . z[d] z[1]2 + . . . + z[d]2 1

∣∣∣∣∣∣∣∣∣∣
> 0

We assume in this paper that entities are in gen-
eral position, i.e. no d + 1 entities are on the same
hyperplane and no d + 2 entities are on the same
hypersphere. Finally, we consider that the position
chosen by a new entity at t is in the interior of the
convex hull of V (t).

3 Entity Insertion

In the following, we first describe a very simplis-
tic distributed version of the generalized entity in-
sertion algorithm. This straightforward algorithm
requires each neighbor of the new entity to re-
compute the new triangulation. Then, we propose
an enhanced algorithm aiming to reduce the overall
computation cost.

3.1 Basic Generalized Algorithm

We consider a new entity z joining the system at
time t. We assume that z has a position in the
space and knows at least one entity in V (t).
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The entity z should first discover the entity w ∈
V (t) such that w is the closest entity to the position
of z. The detection of w can be achieved by a greedy
walk initiated by contacting any entity in V (t). A
distributed iterative implementation requires two
distinct messages: a message find-nearest, sent
by z, requesting the destination’s closest neighbor
to the position of z, and a message nearest, sent to
z, containing the identifier of the emitter’s closest
neighbor to z. A greedy walk algorithm is known
to always succeed in a Delaunay triangulation [5].

The entity w is connected with a set of d enti-
ties Vz ⊆ K(w, t) such that Vz ∪ {w} generates a
d−simplex enclosing z. These entities are the clos-
est neighbors of z in the new Delaunay triangula-
tion. From them, a recursive process allows z to
discover and contact all of its neighbors in DT (t).
The principle is as follows: z sends a message hello
to each new neighbor. They answer by a message
detect containing either some new neighbors, ei-
ther nothing. The process ends when all contacted
neighbors have answered.

We consider an entity a receiving a message
hello from z at time t. The entity a should
re-construct a new Delaunay triangulation for
K(a, t) ∪ {a, z}, noted LDT (a, t). Any known al-
gorithm can be used [3, 19]. Then, the entity a

sends to z a message detect containing all entities
e ∈ K(a, t) such that (e, z) exists in LDT (a, t).

Upon reception of a message detect, the entity
z first adds the unknown new neighbors to its lo-
cal Delaunay triangulation LDT (z, t). These new
neighbors may reveal that some contacted entities
are not neighbors in Delaunay. So, some message
close are sent to them. Then, z sends a mes-
sage hello to its not yet contacted neighbors in
LDT (z, t). Finally, the entity z stores the emitter
of the message detect in K(z, t).

This distributed algorithm naturally leads to
an overlay matching the Delaunay triangulation.
Moreover, as a Delaunay triangulation is unique if
entities are in general position, simultaneous inser-
tions may only cause short local incoherency. In-
deed, the order of message arrival has no conse-

quences on the overlay structure.
Unfortunately, this algorithm admits huge com-

putation costs. Each neighbor of the new en-
tity should re-compute the local Delaunay trian-
gulation. This task requires numerous unneces-
sary computations that are not suitable, especially
in a very dynamic virtual world. Moreover, an
entity e ∈ K(z, t) is detected by all entities in
K(e, t) ∩ K(z, t), so appears in a large number of
messages detect. Such redundancy is unnecessary.

3.2 Improved Generalized Algorithm

In two-dimensional spaces, a known technique de-
picted in Figure 2 consists of finding the triangle
enclosing the new entity, then splitting this triangle
into three, finally recursively checking on all adja-
cent triangles whether the edge flipping procedure
should be applied [10, 11]. In Figure 3, the edge
flipping algorithm replaces the edge (b, c) by the
edge (a, z) because C(a, b, c) contains the new en-
tity z.

Few papers study the behavior of the flipping
mechanism in d−dimensional space. Most notably,
an incremental algorithm for the triangulation con-
struction is proposed in [24] and, at a later time,
the flipping mechanism has been proved to always
succeed in constructing the triangulation [9].

We propose a distributed algorithm inspired by
the edge flipping mechanism. It mainly bases on
geometrical objects. An entity e stores at time t

in a personal buffer T (e, t) the description of all
d−simplices in DT (t) it is involved in. A descrip-
tion of a d−simplex T is a list of the network iden-
tifier and the position of all entities generating T .

The algorithm exhibits three rounds. The first
one aims to discover the enclosing d-simplex. The
greedy walk detailed in Section 3.1 can be used
even if it requires O(n) time in the worst case and
O(n1/d) expected time. Unfortunately, this issue
is not yet resolved. The following details the two
latter rounds for the insertion of a new entity z.
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Figure 2: insertion of a new entity Figure 3: edge flipping

3.2.1 Splitting the Enclosing Simplex

An entity enclosed in a d−simplex splits it into d+1
d−simplices. For instance, a 2−simplex, namely
triangle, is split into three triangles as illustrated
in Figure 2. In Figure 4, a new entity z belonging
to a tetrahedron T = (a, b, c, d) splits it into four
tetrahedra T0 = (a, b, c, z), T1 = (a, b, d, z), T2 =
(a, c, d, z) and T3 = (b, c, d, z).

a

b

z

c

d

Figure 4: splitting the
enclosing tetrahedron Figure 5: a 2-3 flip

The first round ends when the entity z receives a
description of the d−simplex T enclosing its po-
sition. The entity z splits T into d + 1 non-
overlapping d−simplices. Then, it stores these sim-
plices in T (z, t). Finally, z sends a message hello

to its d + 1 new neighbors. This message contains
the former d-simplex T and the d new simplices in
which the destination is involved. In the example
of Figure 4, the entity z sends to its neighbor b a
message hello containing T , T0, T1 and T3.

3.2.2 Recursive Flipping Mechanism

We consider an entity a receiving a message hello

from the new entity z at time t. This message con-
tains a d−simplex T to be discarded and d new
simplices T1, T2 . . . Td containing both a and z.

In the first case, the simplex T does not exist in
T (a, t). This unusual situation may be due to com-
munication latencies or simultaneous events. The
simplex T has been discarded because one entity
b ∈ K(a, t) is within C(T ). The entity a should
detect this entity and informs z that T should not
be considered as a valid d−simplex. The detection
may be eased by maintaining a dedicated structure
called Delaunay tree [4]. Upon reception of this
message, the new entity z should cancel its previ-
ous actions and resume the first round.

In a normal execution, the triangulation is
updated by recursively performing a flipping
mechanism that splits two d−simplices into d

d−simplices. This operation is called 2− d flip. In
Figure 5, two tetrahedra (a, b, c, z) and (a, b, c, d)
result in three tetrahedra (a, b, z, d), (a, c, z, d) and
(b, c, z, d). For simplicity, we restrict here the study
to one simplex T1 among the d simplices contained
in the message hello received by a.

The entity a should first determine the
d−simplex T ′

1 ∈ T (a, t) such that T ′
1 and T1

share one common (d − 1)-simplex, e.g. T1 =
(a, e0, . . . , ed−2, z) and T ′

1 = (a, e0, . . . , ed−2, e).
The entity e may be considered as the opposite of z

through this (d− 1)−simplex. For instance, in two
dimensions, e is the opposite of z through the edge
(a, e0) and, in three dimensions, e is the opposite
of z through the face (a, e0, e1).

If z belongs to the circum-hypersphere of T ′
1, then

the entity a should immediately inform z that (1)
the d−simplex T1 should be discarded and (2) e

should be considered as a new neighbor. This is
achieved by a message detect containing both a
description of e and T1. Then, the entity a operates
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the 2−d flip, resulting in d d−simplices, noted T11,
T12, . . . , T1d. One of these d−simplices does not
contain a but all other should be inserted in T (a, t).
Meanwhile, T1 and T ′

1 are discarded.
The operation described above should be reit-

erated with the newly created simplices. For in-
stance, if we consider T11, the entity a should first
look for the d−simplex T ′

11 ∈ T (a, t) sharing a
(d − 1)−simplex with T11. Then, a should verify
whether the new entity z belongs to C(T ′

11). If so,
a splits T11 and T ′

11 into d d−simplices and sends
another detect message to z.

This process ends until a does not split any new
d−simplex. The entity a should then disconnect
from the entities with which it does not share any
d−simplex in T (a, t).

In this algorithm, all entities involved in a invalid
simplex T should perform the edge flipping mecha-
nism and send a message detect to z. However, if
we consider reliable communication links, this mes-
sage redundancy is unnecessary. It is possible to
conceive a function select that can be executed
by the d entities involved in T and which returns
true for only one entity. This entity is the only
one to send a message detect to z. For instance,
the function select may be implemented by com-
paring the distance with z. Note that, in the algo-
rithm of Section 3.1, the way to select one entity
is harder as no entity knows whether its neighbors
have been yet contacted by the new entity while it
is sure here that all entities involved in a simplex
receives a message detect.

Algorithm 1 shows the pseudocode of the treat-
ment at reception of a hello message. The first
test relates to inconsistency detection. The func-
tion detectInside returns an entity b within C(T )
(lines 2-3). In other cases, the entity receives the
notification of d new d−simplices T1 . . . Td. It puts
them on a queue Q managed by a first-in-first-out
policy (lines 5-6). Then, it retrieves the d−simplex
Ta (line 8). We consider a function share which
takes in argument Ta and returns a d−simplex and
an entity such that the d−simplex shares with Ta

a (d− 1)−simplex and the entity is the opposite of
z through this (d − 1)−simplex (line 9). If the in-

Algorithm 1: hello z T T1 . . . Td

if T /∈ T (a, t) then1

b←detectInside (T )2

send “cancel b” to z3

else4

for i = 1 . . . d do5

Q.put (Ti)6

while Q 6= ∅ do7

Ta ← Q.pop ()8

Tb, e = share (Ta)9

if z ∈ C(Tb) then10

T1 . . . Td ← split (Ta, Tb)11

for i = 1 . . . d do12

Q.put (Ti)13

remove Tb from T (a, t)14

if select (Ta, z) then15

send “detect e Ta” to z16

else17

insert Ta in T (a, t)18

hypersphere-test fails, the d−simplex Ta is stored
(line 18). In the opposite case, Ta is split and the
recursive process is achieved by putting the result-
ing d−simplices in the queue (lines 12-13). In this
case, a detect message is sent to the new entity z

(lines 16) if the entity is the selected one (line 15).

3.3 Analysis

We begin the analysis of the algorithm by the
computation cost. Indeed, the number of in-
hypersphere-test to perform is a main concern as
it is an expensive task.

We note k the number of neighbors of the new
entity. Each neighbor of the new entity, except the
d + 1 entities in the enclosing d−simplex, has been
detected by its d neighbors. Each detection requires
one in-hypersphere-test, so d ∗ (k − (d + 1)) opera-
tions should be performed. Moreover, the insertion
requires d additional failing in-hypersphere-tests by
entity before to end the algorithm. So, k ∗ d ad-
ditional in-hypersphere-tests are necessary. There-
fore, the total number of in-hypersphere-tests is less
than 2 ∗ d ∗ k.

We then show that the computation task is fairly
distributed among the neighbors. The worst case
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is as follows: one entity p0 is linked with all of the
neighbors of z, so one entity participates to all the
d−simplices to discover. In this case, this entity
should realize k− (d+1) times the in-hypersphere-
test as the d + 1 entities generating the enclos-
ing d−simplex do not require any test. But, d

additional in-hypersphere-tests end the algorithm.
Therefore, the number of in-hypersphere-tests per-
formed by one neighbor of a new entity linked to k

neighbors is less than k.
We now deal with the time complexity. We con-

sider asynchronous communication links, so it is im-
possible to give a bound on the time required for
the insertion of a new entity. However, it is pos-
sible to measure the number of causal operations:
the number of times the new entity should send a
hello after reception of a detect until it discovers
all neighbors. We show that the maximal number
of causal operations required by the insertion of a
new entity linked to k neighbors is less than k−d

2 .
Let z be the new entity and {p0, p1, . . . pi, . . . pk}

the set of neighbors of z in DT (t + 1). The worst
case occurs when the length of the longest path
between z and the farthest entity is maximal in
DT (t). That is, this situation occurs when the en-
closing d−simplex is (p0, p1, . . . pd−2, pk). In this
case, the farthest entity is the entity which lies on
the middle of the path between pd−2 and pk, so the
entity p k−(d−2)

2

. The d first entities are discovered
without any causal operations. On the contrary,
all following detected neighbor requires one causal
operation, so at worst k−(d−2)

2 operations.

4 Entity Deletion

We now focus on the deletion of an entity. Entities
which leave the system can quickly compute the
new connections and inform their neighbors about
the new links they have to create. Thus, when the
set of neighbors of the faulty entity is known, the
optimal computation of the new Delaunay triangu-
lation has a complexity of O(k · log k) where k is
the number of neighbors of the entity [8]. Other
robust algorithms admit a complexity of O(k2) but
simpler implementations [17].

However, entities may crash with no graceful be-
havior. The crash of an entity z ∈ V (t) at time
t is noticed either by a failure detector, either by
the reception of a message from a neighbor. This
crash generates a hole in the triangulation but no
existing connection can be altered by the failure.

First we describe a naive approach, then we
present an improved algorithm, which reduces the
number of messages sent and the computation
cost, especially by reducing the number of in-
hypersphere-tests.

4.1 Basic Generalized Algorithm

A very basic approach to fill the hole emerged from
the crash of z would be to let each neighbor of z

collect all entities on the border of the hole, then
recompute the triangulation. However, a neighbor
of z in DT (t) may not know all of its neighbors in
DT (t + 1). So, two new messages, neighbor and
onborder are introduced. They aim to provide to
each neighbor of z the complete set K(z, t).

We consider an entity a ∈ K(z, t) detecting the
crash of the entity z. It immediately sends a mes-
sage neighbor to its neighbors sharing with itself a
simplex with z. Let Tz(a, t) be the set of simplices
in T (a, t) which contain z. The message neighbor

is sent to all entities in K(a, t) occurring in at least
one simplex in Tz(a, t) This message contains a de-
scription of itself and the identifier of z.

We consider now an entity b ∈ K(z, t) ∩K(a, t)
receiving the message hello sent by a. This mes-
sage is forwarded to the neighbors of b sharing a
simplex with z, so to all entities in K(b, t) occur-
ring in a simplex in Tz(b, t).

Assume now an entity c not linked to a but re-
ceiving the forwarded message neighbor. The enti-
ties a and c are both neighbors of the faulty entity
z in DT (t). So, they have to know each other.
The entity c sends a message onborder to a. This
message contains all entities in K(c, t) occurring in
Tz(c, t). Thus, the entity a knows all entities in-
volved in a simplex containing z. Therefore, the
entity a can easily determine if it still has to wait
for some new messages onborder.

With this flooding mechanism, the entity a even-
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tually knows all entities in K(z, t). So, it can use
any triangulation algorithm to reconstruct the tri-
angulation and contact its new neighbor.

This process has to be executed by all neigh-
bors of z although the triangulation computation
is expensive. Moreover, the flooding generates a
lot of messages. In the next section we present
an improved algorithm which does not require the
full knowledge of K(z, t). Moreover, this algorithm
takes advantage of the (d−1)-simplices forming the
boundary of the hole in order to update the trian-
gulation.

4.2 Improved Generalized Algorithm

We first describe the outlines of the algorithm.
Then, we present it in in the simplest case: the
faulty entity z has only d+1 neighbors. Finally, we
detail a non-trivial example in a three-dimensional
space.

4.2.1 Description

Assume an entity a ∈ K(z, t) detecting the crash
of z. A description of the treatment is given in
Algorithm 2. Its first task (lines 1-7) consists of
extracting from T (a, t) a set Tz(a, t) of d-simplices
containing z. By removing z from them, a knows
some (d−1)-simplices which belongs to the bound-
ary of the hole generated by the crash of z. We
note T ?

z (a, t) the set of these simplices.
Then, the entity a builds a candidate d-simplex

using each pair of (d− 1)-simplices sharing a com-
mon (d − 2)-simplex (lines 8-11). The candidates
are communicated with the message candidate to
all entities in K(a, t) involved in at least one sim-
plex in Tz(a, t) (lines 12-13).

We consider now an entity b ∈ K(z, t) receiving
a message candidate from the entity a. It first
performs a in-hypersphere-test with the candidate
d−simplex T if it is not directly involved in T . If
the test fails — if b is not within C(T ) — b forwards
the message to the entities in K(b, t) which belong
to at least one simplex in Tz(b, t) and do not par-
ticipate to the candidate d−simplex T . This way,

Algorithm 2: a detects the crash of z

Tz ← {T ∈ T (a, t) : z ∈ T}1

Kz ← {e ∈ T : T ∈ Tz}2

T ?
z ← ∅3

foreach T ∈ Tz do4

remove T from T (a, t)5

T ? ← T \ {z}6

insert T ? in T ?
z7

foreach (Ti, Tj) ∈ T ?
z , i 6= j do8

if |T1 ∩ T2| = d− 2 then9

new T ← (T1 ∪ T2)10

insert new T in T (a, t)11

foreach e ∈ Kz do12

send “candidate new T a” to e13

the message candidate turns around the hole and
no entity within the boundary may miss this new
simplex.

Algorithm 3: candidate-fail T c

Kz ← Kz ∪ c1

insert c in K(a, t)2

T1, T2 ← (Tt ∈ T ?
z : Tt ⊂ T )3

foreach Ti ∈ {T1, T2} do4

new T ← Ti ∪ {c}5

foreach e ∈ Kz do6

send “candidate new T a” to e7

If the in-hypersphere-test succeeds — b ∈ C(T )
— the entity b sends a message candidate-fail

to a. This message contains the failed simplex and
a description of the emitter. Upon reception of a
message candidate-fail (see Algorithm 3), the
entity a first retrieves the (d − 1)-simplices used
to build the failed candidate (line 3). Then, it
builds a new candidate d-simplex from these (d−1)-
simplices and the entity c (lines 4-5). Finally, it
communicates these new candidates with a message
candidate to its neighbors on the hole boundary
(lines 6-7).

4.2.2 A Trivial Case

The hole left by z is exactly the missing d-simplex
T in DT (t + 1). No further actions are needed ex-
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cept that all neighbors of z should add T into their
respective buffer T . Indeed, the d + 1 neighbors of
z are already interconnected.

The entity z participates to d + 1 d-simplices.
Each neighbor of z is involved in d out of these
d + 1 d-simplices. The d d-simplices known by ei ∈
K(z, t) are noted :

T ei
0 = {e1, . . . , ed, z}

...

T ei
j = {ek|0 ≤ k ≤ d} ∪ {z} \ {ej} j 6= i

...

T ei
d = {e0, . . . , ed−1, z}

Note that T ei
i does exist, but is not in T (ei, t).

For the entity ei, the hole is circumscribed by
the d (d−1)-simplices resulting from the operation
T ei \ {z}. Only one of the d + 1 (d − 1)-simplices
(T ei

i ) is not known by ei. Yet T can be easily rebuilt
by any pair of the (d− 1)-simplices:

T = {Tm ∪ Tn} (0 ≤ m,n ≤ d, m, n 6= i)

For better understanding, let us rephrase this ba-
sic idea in the 3-dimensional space: the hole has the
shape of a tetrahedron. It is circumscribed by four
triangles. The four entities can be extracted from
any pair of triangles. So, the missing tetrahedron
can be built from any pair of triangles.

The resulting d-simplex T is identical for each
pair of the (d− 1)-simplices. Actually the result is
only a candidate simplex. Indeed, it can not be in
conflict with any entity in K(ei, t), but it may be
with an entity in K(z, t). So, the entity ei sends to
the d neighbors K(z, t) ∩K(ei, t) a message candi-
date containing T .

Upon reception of a message candidate, the en-
tities do not have to execute the in-hypersphere-
test because they participate to the candidate d-
simplex T . They have to forward the message to
their neighbors that are both neighbors of z and
not included in T . In this trivial case, there is no
entity to test, as all neighbors involve in the can-
didate. So, the recursion immediately stops. The
candidate simplex T is validated but no new con-
nections are required.

4.2.3 Non-Trivial Example

The following example relies on the situation de-
picted in Figure 6 and Figure 7. The enti-
ties a, b, d and f lie in front, while the enti-
ties c and e are in the back. The faulty entity
z is inside the convex hull of all these entities.
The entity z is involved in 8 d-simplices (tetra-
hedra): (a, b, d, z), (a, b, e, z), (a, e, f, z), (a, d, f, z),
(b, c, d, z), (b, c, e, z), (c, d, e, z), and (d, e, f, z). The
(d−1)-simplices (triangles) defining the hole left by
z are: (a, b, d), (a, b, e), (a, e, f), (a, d, f), (b, c, d),
(b, c, e), (c, d, e), and (d, e, f).

Consider the entity a for the rebuilding process:
a is involved in 4 of the 8 tetrahedra. Consequently
it only knows 4 of the 8 triangles surrounding the
hole. Its candidate simplices are T a

1 = (a, b, d, e),
T a

2 = (a, b, d, f), T a
3 = (a, b, e, f), and T a

4 =
(a, d, e, f). They are constructed from each pair of
the triangles sharing one edge. Then, a sends some
messages candidate containing T a

i (i = 1, 2, 3, 4)
to its neighbors in Kz(a, t), so b, c, d, e, and f .

We now focus on the message candidate con-
taining T a

1 received by b. The entity b participates
to this candidate, so it just forwards the message
to c because c is the only neighbor of b belonging
to the boundary of the hole and not involved in T a

1 .
The entity c does not participate to the candi-

date simplex T a
1 . Therefore, it should perform a

in-hypersphere-test. If c is not in C(T a
1 ), nothing

happens and the recursion stops. On the contrary,
the entity c should send a message candidate-fail
message to a.

The candidate T a
1 was built using the triangles

(a, b, d) and (a, b, e). As they do not form a De-
launay tetrahedra together, the entity a uses it to
build two new candidate simplices with the new
neighbor c: T a

11 = (a, b, d, c) and T a
12 = (a, b, e, c).

Then, it communicates these new candidates to its
neighbors in the boundary of the hole, including its
new neighbor c.

With the failed candidate T a
4 a can build the new

candidates T a
41 = (a, c, d, f) and T a

42 = (a, c, e, f).
The final Delaunay triangulation after the dele-

tion of z contains five tetrahedra: (a, b, c, d),
(a, b, c, e), (a, c, d, f), (a, c, e, f), and (c, d, e, f).

8
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Figure 6: Before the deletion of z.
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Figure 7: After the deletion of z.

Two new connections are established: (a, c) and
(f, c) as shown in Figure 7.

4.3 Analysis

In comparison with the basic algorithm, the im-
proved generalized algorithm does not require that
each neighbor of the faulty entity knows all neigh-
bors of z. Moreover, it does not require that each
neighbor of z computes an updated triangulation.

The algorithm fills the hole from its boundary
to its center. At first, candidate simplices are built
from existing (d−1)-simplices. Then, the reception
of the messages candidate-fail forces entities to
compute some new simplices and to open new con-
nections. In the worst case, the iterative process
halts when each entity knows all neighbors of the
crashed entity. So, the improved algorithm is, at
worst, so expensive than the basic one and, in the
vast majority of case, more efficient.

5 Conclusion

In this paper, we present a set of algorithms for
the dynamic maintaining of a distributed overlay
network matching with the Delaunay triangulation
of the entities. The entities can have a position
in any d−dimensional space. We consider here the
arrival of new entities and the crash of an entity.

We originally aim to apply the protocol in
3−dimensions for shared virtual worlds. Especially,
we intend to use the Solipsis [13] platform in order

to implement the protocol. Current version of the
Solipsis protocol is light, however it does not guar-
antee a perfect coherency in the virtual world. A
Delaunay-based overlay could guarantee it, but the
computation cost could become an issue if entities
are very dynamic. Among the future works, we
intend to evaluate the protocol and to compare it
with the Solipsis protocol in a context of real hu-
mans controlling virtual entities.

One of the main drawbacks of these algorithms
is the greedy walk for the detection of the closest
entity to the queried position. Some recent studies
aim to construct small-world networks by adding
only one edge between two entities in the overlay. In
these small-world networks, a basic walk is guaran-
teed to succeed in polylogarithmic time. In future
works, we will try to transform the Delaunay tri-
angulation to a small-world network, such that the
detection of the closest entity could be substantially
more efficient.
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