
Faster Web through Client-assisted CDN Server Selection

Utkarsh Goel, Mike P. Wittie, and Moritz Steiner†

Department of Computer Science, Montana State University, Bozeman MT USA 59717
†Akamai Technologies, Inc., San Francisco, CA, USA 94103
{utkarsh.goel, mwittie}@cs.montana.edu, moritz@akamai.com

Abstract—Modern websites use Content Delivery
Networks (CDNs) to speed up the delivery of static content.
However, we show that DNS-based selection of CDN servers can
be refined to fully deliver on the speedup of CDNs. We propose
DNS-Proxy (dp), a client-side process that shares load-balancing
functionality with CDNs by choosing from among resolved
CDN servers based on last mile network performance. Our
measurement study of CDN infrastructure deployed by five
major CDN providers shows that dp reduces webpage load time
by 29% on average. If dp has already resolved the domain, the
reduction in webpage load time is as much as 40%. Finally, dp
reduces the load time of individual static Web objects by as much
as 43%. We argue that dp enables a more effective use of existing
content delivery infrastructure and represents a complementary
strategy to a continual increase of geographic content availability.

Index Terms—DNS resolution, server selection, measurement

I. INTRODUCTION

The growing competition among Internet services such
as online social networks, e-commerce, or streaming video,
drives developers to improve the responsiveness of their
applications. Content Delivery Networks (CDNs) play a
vital role in reducing the request delay to improve the user
experience [1]. To increase application responsiveness and
attract content providers, CDNs invest significant resources to
geographically distribute their content servers [2]. However,
users’ opinions on Web content delivery indicates that CDN
performance could be improved to meet user expectations [3].

The speed at which static content is delivered is dominated
by the network latency between clients and CDN servers from
which the content is downloaded [4][5][6]. Content-rich web-
sites contain images large enough to require multiple round
trips to download [7]. Further, website rendering on browsers
includes dependencies, which means that static content such
as image, advertisement, JavaScript, and CSS files are fetched
over multiple request rounds [6][8].

CDNs reduce the impact of network round-trip times (RTTs)
on overall page load time by serving content from widely
distributed servers in last-mile networks. CDNs balance the
load on their servers through DNS-based server selection,
where geographically distributed DNS servers resolve CDN
URLs to IP addresses of nearby content servers [9][10].
However, we discover that content distribution may not
reduce the network latency as expected, because DNS-based
server selection does not always direct clients to the closest
available content server, for various reasons such as content
availability, load-balancing, cost of bandwidth, etc.

We performed an extensive measurement effort to
evaluate the performance of CDN infrastructure deployed by

Akamai Technologies and Google Inc. and discovered the
following four limitations of the current DNS-based server
selection mechanisms.

• The end-to-end latencies between a client and the CDN
servers returned in a DNS resolution may have a high
variation.

• The end-to-end latency between a client and a CDN
server resolved by one DNS server could be remarkably
lower than the end-to-end latency between the same
client and a different CDN server resolved by another
DNS server. Although such differences in end-to-end
latency are to be expected in general, we show that they
are domain dependent, in that the same DNS does not
always provide the fastest CDN server for a given client
for every resolved Web domain.

• A DNS server may direct a client to unnecessarily distant
CDN servers when closer CDN servers are available.
Again, although such direction may result from intended
load-balancing, we show how their negative impact may
be avoided.

• DNS-based server selection may occasionally direct
clients to CDN servers inaccessible from clients’ network,
which results in the failure to access static Web content.

We conclude that current implementation of DNS-based
server selection should be improved, in that it should take
full advantage of geographic server availability to reduce the
impact of network RTT on overall webpage load time.

Based on our measurement study we argue that clients are
best-positioned in the network to measure CDN performance
and participate in the selection of the best CDN replica. It is
therefore timely to explore solutions, where server selection
is shared by clients and CDNs to both minimize the network
delay and balance server load. We propose DNS-Proxy (dp),
that complements DNS-based server selection with client
measurement from the last-mile networks. dp implements
a lightweight parallel probing mechanism to probe resolved
CDN servers, to direct clients to the fastest available CDN
server.

Our results show that, dp reduces the webpage load time
by 29% on average. If a request for a domain is already
resolved by dp, the webpage load time is reduced by as
much as 40%. Finally, dp reduces the load time of individual
static Web objects by as much as 43%. To the best of
our knowledge, dp is the first step in this direction that
extends the CDN replica selection functionality to client
devices in last-mile networks on a per-domain granularity.

978-1-4799-9964-4/15/$31.00 ©2015 IEEE

Our experience with dp shows that load balancing can
be shared effectively between CDNs and client devices in
end-networks. We make dp available as an open source tool
at http://github.com/msu-netlab/dp.

Although some CDNs may use anycast for global load-
balancing [11], the goal of this study is to understand the im-
pact of DNS-based server selection used by most major CDNs.

The rest of the paper is organized as follows. In Section II,
we describe our experimental setup and discuss the impact
of current DNS-based server selection techniques on Web
performance. In Section III, we discuss the implementation
of dp as a tool for client-assisted server selection. Section IV
describes our evaluation results. In Section V we offer a
discussion of dp’s path to deployment. In Section VI we
outline the related work on reducing network latency for Web
applications. Finally, we conclude in Section VII.

II. DNS-BASED LOAD BALANCING

To discover the limitations of current DNS-based server
selection techniques and to understand their impact on Web
performance, we configured several experiments on 123 de-
vices, made available by the Dasu testbed, in different last-
mile networks across different geographic areas [12]. Our mea-
surement data contains 887 DNS resolutions from 386 DNS
servers and 9,040 TCP and HTTP GET probes from clients on
different continents to 1684 distinct CDN servers. We show
the geographic distribution of our test devices in Table I.

A. Experimental Setup

We measured the difference in end-to-end latency and
download time of static content between clients and CDN
servers returned by different DNS servers. We configured
experiments on each device to download images from
each of the resolved CDN servers, and record the time to
establish TCP connection, time to receive the first bit of the
HTTP response, and the time to download the image. Each
device was configured to download a 77 KB image hosted on
Akamai’s CDN and a 118 KB image hosted on Google’s CDN.

We configured each device to send a DNS query to
its default (local) DNS server (LDNS), the Google’s
public DNS server 8.8.8.8 (GDNS), an open DNS
server 208.67.222.222 (ODNS), and Level3’s
public DNS server 209.244.0.3 (L3DNS) to
resolve domain names hosted by Akamai Technolo-
gies (fbcdn-profile-a.akamaihd.net) and
Google Inc. (lh3.googleusercontent.com).1 Next,
each device recorded the resolutions from DNS servers,
initiated a TCP connection with each CDN server in the
DNS resolution, and recorded the time for TCP connection
establishment. After a successful TCP connection, the device
sent an HTTP HEAD request to warm up the CDN’s cache
and issued another HTTP HEAD request to record the time to
receive first bit of HTTP HEAD response. Finally, each device
sent an HTTP GET request to download the cached image
and recorded the time to completely download the image.2

1We ensured that the LDNS configured on the device was not one of the
open DNS servers used in our study.

2We ensured that the devices issued all the DNS queries and content fetches
from CDN servers within a very small time window.

CONTINENT # CLIENT DEVICES
North America 54

Europe 35
Asia 14

Australia 10
Africa 6

South America 4

TABLE I
GEOGRAPHIC DISTRIBUTION OF DASU NODES.

B. Impact of CDN Choice on Static Content Delivery

The DNS resolutions contain a list of IP addresses of CDN
servers within a single subnet. The client operating systems
selects the first IP address from the list. A DNS resolution
contains a list of IP addresses of CDN servers, which might
suggest that latency to these servers should be similar and that
selecting any of the CDN IP addresses would not impact the
download time. However, we show that there is a significant
difference in the end-to-end latency between the client and
each of the CDN servers/clusters returned by DNS.

In Figures 1-4 we show the minimum, average, and
maximum difference in the end-to-end latency (measured as
time to establish a TCP connection) among Akamai CDN
servers resolved by LDNS, GDNS, ODNS, and L3DNS.
Similarly, in Figures 5-8, we show latency difference among
Google CDN servers. These graphs show that the end-to-end
latency between the client and the CDN servers returned in the
list has a high variation. For example, in Figure 1 we see that if
clients always pick the server with the least end-to-end latency,
80 percent of the clients will have an end-to-end latency within
50 ms. However, since clients’ operating systems pick the
first CDN IP address from the list of resolved CDN servers,
which results in a random CDN selection over time, we see
that 80 percent of the clients will have an end-to-end latency
within 100 ms. Therefore, if clients choose the first CDN IP
present in the list they may not connect with the fastest server
available, since the server with the lowest end-to-end latency
with the client might not be the first server in the list.

Content providers are interested in understanding the impact
of server selection on static content download times from
CDNs. Therefore, next we show the impact of CDN choice on
the image download time. In Figures 9-12, we show the mini-
mum, average, and maximum image download time from Aka-
mai CDNs returned by LDNS, GDNS, ODNS, and L3DNS.
Similarly, in Figures 13-16, we show the minimum, average,
and maximum image download time from Google CDNs
returned by LDNS, GDNS, ODNS, and L3DNS. Similarly
to previous graphs representing the variation in end-to-end
latency, we show a variation in the download time of individual
static Web objects. For example, in Figure 9, the minimum
image download time for 80% of the clients is within 250 ms,
however, the average image download time is within 750 ms.
The difference in minimum and average image download time
is within 500 ms for 80% of clients, which is due to the mul-
tiple round trips between clients and CDN servers involved.

C. Impact of DNS Choice on Static Content Delivery

Analogous to the choice among CDN servers, clients also
have a choice between DNS servers. Clients have a number
of options from which to chose their default DNS servers.

Fig. 1. Latency to Akamai servers
resolved by LDNS.

Fig. 2. Latency to Akamai servers
resolved by GDNS.

Fig. 3. Latency to Akamai servers
resolved by ODNS.

Fig. 4. Latency to Akamai servers
resolved by L3DNS.

Fig. 5. Latency to Google servers
resolved by LDNS.

Fig. 6. Latency to Google servers
resolved by GDNS.

Fig. 7. Latency to Google servers
resolved by ODNS.

Fig. 8. Latency to Google servers
resolved by L3DNS.

Fig. 9. Download time for Akamai
servers resolved by LDNS.

Fig. 10. Download time for Akamai
servers resolved by GDNS.

Fig. 11. Download time for Akamai
servers resolved by ODNS.

Fig. 12. Download time for Akamai
servers resolved by L3DNS.

Fig. 13. Download time for Google
servers resolved by LDNS.

Fig. 14. Download time for Google
servers resolved by GDNS.

Fig. 15. Download time for Google
servers resolved by ODNS.

Fig. 16. Download time for Google
servers resolved by L3DNS.

Further, some DNS providers may process EDNS-based DNS
requests [13], while others may strip out any information
available in the EDNS payload [14]. Thus, the variation in the
adoption of EDNS mechanisms may also introduce additional
variation in the performance of the CDN servers returned in a
DNS resolution, since DNS servers that process EDNS-based
requests could use the client’s IP address available in the
EDNS payload to direct the user to a CDN server nearest
to the client’s subnet. Finally, using a client’s IP address
from the EDNS payload may direct the client to the closest
CDN server, however, the client may not have the least
end-to-end latency with that CDN server due to congestion in
the network, large queues on the server, or circuitous routing.
Therefore, it is important to understand the performance of
CDN servers returned by different DNS providers.

In Figures 17-20, we compare the end-to-end latency and
the time to download images from Akamai CDN servers
returned by LDNS, GDNS, ODNS, and L3DNS. Similarly, in
Figures 21-24, we compare the end-to-end latency and the time
to download images from Google CDN servers returned by
LDNS, GDNS, ODNS, and L3DNS. These figures show that
the end-to-end latency between clients and CDN servers re-
turned by one DNS server is lower than CDN servers returned

by another DNS server. For example, in Figure 18 we see that
for 80% of the clients that resolve Akamai CDN domains from
LDNS, GDNS, ODNS, L3DNS have an average end-to-end la-
tency within 100 ms, 125 ms, 150 ms, and 300 ms respectively.
Similarly, in Figure 22 we see that for 80% of the clients that
resolve Google CDN domains from LDNS, GDNS, ODNS,
L3DNS have an average end-to-end latency within 100 ms,
150 ms, 175 ms, and 200 ms respectively. Such variation in
the end-to-end latency to CDN servers is also reflected in the
time to download images from Akamai and Google CDNs.
For example, in Figure 24 we see that for 80% of the clients
the time to download image from LDNS, GDNS, ODNS, and
L3DNS is 600 ms, 700 ms, 750 ms, and 800 ms respectively.

In Figure 18 we also see that for 35% of clients ODNS
returns CDN servers with average end-to-end latency lower
than CDN servers returned by GDNS. Similarly, for about
40% of the clients in Figure 22 we see that the average
end-to-end latency to the CDN servers returned by all DNS
servers are almost similar. As a result of such variation in
DNS resolutions, it remains unclear which DNS server will
direct the client to the fastest server at all times. We argue
that clients could remain unaware of opportunities to reduce
the Web latency when they rely on one DNS server.

Fig. 17. Min. end-to-end latency from
Akamai CDNs.

Fig. 18. Avg. end-to-end latency from
Akamai CDNs

Fig. 19. Min. Image download time
from Akamai CDNs

Fig. 20. Avg. Image download time
from Akamai CDNs

Fig. 21. Min. end-to-end latency for
Google CDNs.

Fig. 22. Avg. end-to-end latency for
Google CDNs

Fig. 23. Min. Image download time
for Google CDNs

Fig. 24. Avg. Image download time
for Google CDNs

D. Overall Performance Variation of CDN servers

Given that the Web performance is affected by the choice
of a CDN server within a DNS resolution and by the choice
of a DNS server, we now explore how these choices could
impact the Web performance in combination. We argue this
is important because many users opt for open and public
DNS servers that offer faster resolutions and also because
LDNS does not always resolve to best CDN servers, which
we show later in Figure 41. In Figures 25 and 29 we compare
the minimum, average, and maximum end-to-end latency
between clients and the CDN servers resolved by any of the
DNS servers used in our study. In these graphs we show
that the minimum end-to-end latency to CDN servers, when
resolutions from LDNS, GDNS, ODNS, and L3DNS are
combined, is significantly lower than the average end-to-end
latency. For example, in Figure 25, we show that for 90% of
the clients the minimum end-to-end latency to Akamai CDN
servers, resolved by any of the DNS servers, is less than 50 ms
and the average end-to-end latency is more than 200 ms. We
also show similar trend in end-to-end latency for Google
CDNs and the image download time for Google and Akamai
CDNs in Figures 29, 26, and 30. Therefore, client applications
that rely on resolutions from multiple DNS providers, as
proposed by Vulimiri et al., may not connect with CDN servers
that have the least end-to-end latency to the client [15].

Next, in Figures 27 and 31 we show the ratio of minimum
end-to-end latency to maximum end-to-end latency for
Akamai and Google CDN servers returned by DNS servers
in our study. For example, in Figure 27, we show that for
the 85% of users connecting to Akamai CDN servers, the
end-to-end latency for the fastest available server is 40%
lower than the slowest server. Similarly, in Figure 31, the
end-to-end latency to the fastest available Google CDN server
is only about 30% lower than the slowest server.

We also show similar ratios for image download time from
Akamai and Google CDN servers in Figures 28 and 32. For
example, in Figure 28, we show that for 90% of the users the
image download time from the fastest available Akamai CDN
server is only 50% faster than the slowest server. Similarly, in
Figure 32, the image download time from the fastest available

Google CDN server is 30% faster than the slowest server.

E. Causes of CDN Performance Variation

In previous sections, we discovered the variation in the
performance of CDN servers resolved by different DNS
providers. While investigating the cause of this variation, we
also found that DNS resolutions often direct clients to CDN
servers in different IP subnets and different network locations.
For example, as much as about 45 and 40 percent of the clients
were directed to CDN servers in different IP subnets when
resolving Akamai and Google Web domains, respectively.

Next, we investigate the impact of inconsistency in DNS
resolutions on client redirection. Due to inconsistency in
DNS resolutions, some clients are often directed to servers
in different geographic locations. For example, a client in
Virginia was directed to servers in Cambridge, California, and
Texas in three different DNS resolutions from the same DNS
server. Therefore, we argue that when DNS resolutions are
inconsistent, clients’ Web requests may have to be served by
CDN servers in locations farther than the closest available
CDN server. Although this behavior is maybe due to routine
load balancing, let us look at its impact on extra latency
perceived by clients in connecting with CDN servers.

Our method to calculate extra end-to-end latency for each
client is based on the difference in minimum and mean
latency to servers in different IP subnets. In Figures 33
and 34, we show the extra end-to-end latency as perceived
by clients to connect with Akamai and Google CDN servers,
respectively. For example, In Figure 33 we show that for 15%
of the clients that receive DNS resolutions to different IP
subnets from LDNS and L3DNS for Akamai CDN domains,
the extra end-to-end latency perceived by clients in every
round trip is more than 100 ms and 150 ms respectively.
Similarly, in Figure 34, we show that for 15% of the clients,
that receive DNS resolutions to different IP subnets from
LDNS and L3DNS for Google CDN domains, the extra
end-to-end latency perceived by clients in every round trip is
more than 15 ms and 20 ms respectively.

In Figures 35 and 36, we show the extra latency in down-
loading images as perceived by clients in connecting with

Fig. 25. Latency variation with Aka-
mai CDNs.

Fig. 26. Download time variation with
Akamai CDNs.

Fig. 27. Latency variation for Akamai
CDNs (%).

Fig. 28. Download time variation for
Akamai CDNs (%).

Fig. 29. Latency variation with Google
CDNs.

Fig. 30. Download time variation with
Google CDNs.

Fig. 31. Latency variation for Google
CDNs (%).

Fig. 32. Download time variation for
Google CDNs (%).

Fig. 33. Extra latency to Akamai
CDNs.

Fig. 34. Extra latency to Google
CDNs.

Fig. 35. Extra download time to Aka-
mai CDNs.

Fig. 36. Extra download time to
Google CDNs.

Akamai and Google CDN servers, respectively. For example,
in Figure 35 we show that for 80% of the clients, that receive
inconsistent DNS resolutions from LDNS, GDNS, ODNS, and
L3DNS, the extra latency in download image from Akamai
CDN servers is within 100 ms, 200 ms, 300 ms, and 400 ms
respectively. Similarly, in Figure 36, we show that for the same
clients the extra latency in downloading an image from Google
CDN servers is within 300 ms for LDNS, GDNS, and ODNS,
and 500 ms for L3DNS. Therefore, if clients rely on resolu-
tions from the regular DNS-based server selection, the penalty
in terms of latency is very high. In Section III, we show how
dp eliminates the penalty while preserving load-balancing.

F. Unreachable CDN Servers

Client devices and end-networks are often configured with
firewalls to block access to some IP addresses. Automated
Intrusion Detection System (IDS) software scans for any
activity that might abuse the network resources. Such IDS
may occasionally block access to some CDN servers, a
behavior we verified in MSU’s campus network. DNS
providers remain unaware of such network configurations
and therefore when clients request DNS resolutions, they
occasionally get directed to inaccessible servers, which results
in failure to start the downloads of static Web content [3][16].
Although server inaccessibility prevents the content from
being downloaded all together, we believe that this could be
avoided by vetting CDN servers.

Throughout our study of over a period of three months,
we recorded the number of faulty DNS resolutions, that
is, whether a DNS resolution contained at least one server
address to which client could not connect. We show the
number of faulty DNS resolutions for Akamai and Google

CLIENT COUNTRY DNS
#faulty RESOLUTIONS
Akamai Google

North America LDNS 2 6
North America GDNS 3
North America ODNS 5 3
North America L3DNS 11

Europe LDNS 2
Europe GDNS 1 1

Asia LDNS 5
Asia GDNS 3 6
Asia ODNS 4
Asia L3DNS 1

Australia LDNS 2
Africa GDNS 3

TABLE II
FAULTY RESOLUTIONS FOR AKAMAI AND GOOGLE CDN SERVERS.

CDNs by LDNS, GDNS, ODNS, and L3DNS for clients in
different countries in Table II.

Out of the 123 DASU devices used in our study, we
found that only about 15 devices in different continents
received at least one DNS resolution that had at least one
inaccessible CDN server. Specifically, for such clients in North
America we found that these clients were connected through
Comcast Cable, Florida Cable, Bright House Networks, Cox
Communications, VTX Broadband, and Time Warner Cable.

We show that the problem of faulty DNS resolutions exists
for both Akamai and Google CDN infrastructure. Further,
to mitigate client direction from faulty DNS resolutions,
the use of multiple DNS providers may not be useful since
we discovered that popular DNS providers such as GDNS,
ODNS, and L3DNS and as well as clients’ LDNS sometimes
direct clients to the same inaccessible CDN servers. In
Section III, we show that dp eliminates this problem by
making DNS resolutions aware of the performance and
routing restrictions in the last-mile networks.

Fig. 37. dp’s resolution mechanism resolution for non-cached domains. Fig. 38. dp’s resolution mechanism for cached domains.

III. DNS-PROXY (DP)

Our measurement study has discovered that DNS-based
load-balancing used by CDN infrastructures deployed by Aka-
mai and Google often do not direct users to the closest CDN
servers available. Therefore, we propose DNS-Proxy (dp), a
client-side tool that selects best CDN servers with respect to
performance of users’ last mile networks. dp can also be used
as a DNS server on network gateways to serve incoming DNS
requests from multiple devices in the same subnet. dp runs
as a virtual DNS server on client devices and generates DNS
resolutions that are most suitable for the variable performance
of the user’s network. dp receives DNS requests from client
applications and fans them out to different DNS servers. dp
then probes all resolved IP addresses in parallel and returns
the CDN server with the lowest end-to-end latency to the
client. We make dp available as an open source tool at
http://github.com/msu-netlab/dp.

A. Client-assisted Server Selection

We depict sequence diagrams of dp’s approach to client-
assisted server selection in Figures 37 and 38. dp runs on
client devices and listens for incoming DNS requests on
port 53, the standard port for DNS-based services. When dp
receives a DNS request from a client, it forwards the request
to a number of different DNS servers and waits for the DNS
resolution replies. The DNS servers that the dp forwards
the request to can be easily configured based on the user’s
preference. In our experiments, we configured dp to resolve
DNS requests from LDNS, GDNS, ODNS, and L3DNS. As
shown in Figure 37, after dp receives a DNS resolution, it
sends TCP SYN packets, in parallel over raw sockets, to
port 80 (standard port for hosting HTTP based services) and
port 443 (standard port for hosting HTTPS based services) to
each resolved CDN server. To prevent dp from inadvertently
launching a SYN attack, dp sends a FIN packet after receiving
a SYN/ACK for each SYN packet, or after a timeout.

The end-to-end latency to each CDN server is measured
based on the time to receive the TCP SYN/ACK packet from
the probed server. dp collects the end-to-end latency to each
server and maps the domain name being resolved to the CDN
server with the lowest end-to-end latency. dp then returns
the server with the lowest end-to-end latency identified, as a
resolution for the client’s DNS request. Apart from directing
clients to the fastest available CDN servers, dp prevents

directing clients to the servers for which it never receives
a TCP SYN/ACK packet. However, if a DNS resolution
contains only one IP address, dp directs the client to that IP
address, regardless of it being inaccessible.
dp sends DNS responses to clients using one of two

methods. dp resolves domain names either from its own cache
of DNS entries (we refer it as warm-cache), or delays the DNS
response for a domain not in its cache to probe for the fastest
server on the fly (we refer it as cold-cache). As shown in
Figure 38, when dp has a DNS entry for the domain being
resolved in its cache, dp instantly replies to the clients with
a DNS resolution, which also allows to reduce the overhead
for name resolution [17]. However, when a DNS entry is
not available in the cache, dp relies on a user configurable
deadline (set to 30 ms by default) within which dp must
reply the client’s DNS request with the fastest identified CDN
server. The user configurable deadline ensures that users’ DNS
requests do not have to wait if the domain being resolved
is not available in dp’s cache, or if probing different CDN
servers take a long time. While the use of a deadline in
dp predictable response times, dp also continues to probe
additional CDN servers after the deadline to refine its accuracy
of server selection for future requests.
dp sets the time to live (TTL) value in the DNS response

for each DNS resolution generated from the cold-cache to
two seconds. A low TTL value in the DNS response allows
clients to use a resolved server (from dp’s cold-cache) for
only a short period of time before reissuing the DNS query.
We expect dp to have probed all resolved CDN servers and
identified the fastest available CDN server within two seconds.
At this point dp will respond to the second DNS query
from its warm-cache. However, the TTLs for DNS responses
generated from the warm-cache are larger than two seconds,
but lower than the actual TTL values present in responses from
different DNS servers. Further, dp deletes DNS entries from
its cache for any domain that has been cached for more than
DNS TTL, which enables dp to proactively identify the best
CDN server, if the performance of the previously identified
best server had changed since it was last probed [18].

B. Probing Metric

Our decision to use TCP connection setup time in dp as
indicative of object download time from CDN server is based
on the data collected from Dasu devices. Predicting the fastest

Fig. 39. TCP OPEN vs HTTP HEAD for Akamai
CDNs at different probing intervals.

Fig. 40. TCP OPEN vs HTTP HEAD for Google
CDNs at different probing intervals.

Fig. 41. Frequency of different DNS servers resolv-
ing to fastest CDN servers, as identified by dp.

available CDN server based on the actual least download time
of static Web objects would reflect the true performance for
a given CDN server, however, downloading Web objects from
each resolved CDN server would introduce a high probing traf-
fic and long probing delay. Therefore, we argue that the predic-
tion of fastest available server should be based on a server se-
lection mechanism that is faster and requires less probing traf-
fic. We evaluate both the time to receive the first bit of HTTP
response (we refer it as the HTTP HEAD method) from CDN
servers and the time to establish a successful TCP connection
with a CDN server (we refer it to as the TCP OPEN method).

To find an appropriate method for server selection, we
compare the download time of fastest server identified by TCP
OPEN and HTTP HEAD at different dp response deadlines.
We refer to dp’s deadlines as probing interval before step 7
in Figure 37. In Figures 39 and 40, we compare the image
download time from fastest CDN servers for Akamai and
Google CDN domains, as identified using the TCP OPEN
and HTTP HEAD methods. The x-axis shows dp’s probing
interval following a client DNS request. The y-axis shows
the average of image download times from the fastest CDN
servers identified at different probing intervals of dp. The
dashed horizontal line shows the download time from the
fastest CDN server averaged over all clients, regardless of the
server selection method and dp’s probing interval.

We show that as the probing interval increases dp
continues to listen for additional resolved CDN servers to
refine accuracy of client-assisted server selection for future
requests. We also note that 1) At any given probing interval,
the TCP OPEN method is more accurate on average than the
HTTP HEAD method, because TCP OPEN receives higher
percentage of probes back in a given interval, and 2) the line
representing TCP OPEN method tends towards the dashed
line, which indicates that the download time of the server
chosen by the TCP OPEN method is approximately that of
the server with the least image download time. For example,
in Figure 39, the image download time of the fastest CDN
server identified by the TCP OPEN method at the probing
interval of 180 ms is 90 ms, whereas, the image download
time of the fastest server identified by the HTTP HEAD
method is 120 ms at the same probing interval.

Although probing may introduce an extra load on the
client’s network, it is important to note that dp caches probe
results to avoid probing same servers in subsequent requests.
Further, since dp reduces the number of DNS requests leaving
the network or the client device by resolving them from it’s

cache, the overall network load is reduced. Finally, our evalu-
ation of dp on a 24-hour DNS trace collected from the MSU’s
network shows that the network traffic sent and received by dp
is less than 700 KB for every 500 resolved Web domains. We
argue that in comparison to the benefits dp brings for clients,
the dp probing traffic is reasonably negligible.

IV. RESULTS

Next we demonstrate, based on extensive measurement
of dp, that client-assisted server selection is more effective
at identifying fastest available CDN servers and reducing
webpage load times across CDNs, last mile networks, and geo-
graphic locations, than the current DNS-based server selection
techniques.

A. Identifying DNSs with Fastest CDN Servers

In Figure 41, we show whether the fastest CDN server
chosen by dp was resolved from LDNS, GDNS, ODNS, or
L3DNS. We show that for resolving Akamai CDN domains,
only 48% of resolutions from LDNS contained the fastest
CDN server, whereas, while resolving Google CDN domains,
51% of resolutions from LDNS contained the fastest CDN
server. We also discovered that resolutions from different
DNS providers may both contain one or more common IP
addresses, which were identified as the fastest server by dp
in some resolutions. For such resolutions, we increment the
height of bar for each DNS provider that contained the fastest
CDN server, which is indicative of the fact that the sum of
heights of the bar plots do not aggregate to 100%. Since
none of the DNS servers used in our study are reliable in
directing clients to the closest available CDN replicas at all
times, we argue that dp provides a complementary approach
to DNS-based server selection by relying on multiple DNS
providers and directing the clients to the fastest available
CDN replicas from resolved CDN addresses at all times.

B. Faster Web through DNS-Proxy

We compare the webpage load time of websites hosted
on Akamai, Google, Level 3, CloudFront, and Reflected
Networks CDN servers, when clients use their ISP-provided
LDNS and dp. We list the website addresses, number of Web
objects, the hosting CDN, and the total page size in Table III.
We configured experiments on devices in California (CA),
Montana (MT), Illinois (IL), and New York (NY) to load these
websites 20 times each from CDNs resolved by LDNS and
dp. To prevent object loading from browser cache, we loaded
websites in Google Chrome browser’s incognito window.

Webpage Host CDN # Web objects Page Size
huffingtonpost.com Akamai 374 3.4 MB

developer.android.com/tv/ Google 60 6.8 MB
level3.com Level 3 58 1.4 MB

chictopia.com CloudFront 90 1.8 MB
an adult “tube” site Reflected N/w 70 7.6 MB

TABLE III
DETAILS OF WEBPAGES LOADED FOR COMPARISON.

Fig. 42. Comparion of Webpage load times using LDNS and DNS-Proxywith
warm-cache.

In Figure 42, we show the average webpage load time of
different websites using LDNS and dp with warm-cache from
CA, MT, IL, and NY. Above every bar, we show the reduction
in webpage load time in percentage achieved when using dp.
dp speeds up page loads across CDN providers and geographic
locations. Specifically, for static content heavy website, such as
huffingtonpost.com, dp provides a speedup of as much as 40%.
For other websites with relatively fewer or smaller images,
dp provides speedup close to 30% in the common case.

In Figure 43 we compare the average load times of
individual Web objects, hosted on different websites, when
loaded from servers resolved by LDNS and dp with warm-
cache. We loaded a total of 35443 Web objects hosted by
different CDN providers. We show the average object load
time (which includes the DNS lookup time, TCP connection
setup time, time to receive the first bit of HTTP response, and
time to download the object) using LDNS and dp and label
each bar with the average percentage reduction in individual
object load time achieved by dp as compared to LDNS. We
show that even when dp does not have a resolution for a
domain in its cache, dp is effective in reducing the webpage
load time by delaying DNS responses to identify fastest CDN
servers. For example, dp reduces the load time of each web
object hosted on CloudFront CDN servers by about 43%. For
web objects hosted on other CDNs, dp reduces the load time
for each object by about 20% on average.

Finally, in Figure 44, we compare the average of
20 webpage load times each from CDNs resolved by using
LDNS and dp with cold-cache. For this comparison study, we
configured dp’s DNS resolution deadline to 30 ms and cleared
dp’s cache after each page load. We show that even when dp
does not have a DNS resolution for a Web domain available
in its cache, delaying DNS resolutions by 30 ms to identify
faster servers helps to reduce the overall webpage load time.
We show the average percentage reduction in webpage load
times using dp with cold-cache on top of each dp bar in
the graph. The one exception in our data is for webpages
hosted on Google CDNs for which the average webpage load
time with dp’s cold-cache was marginally higher than the
average load time with LDNS. We believe that in most cases
dp could eliminate the cold-cache penalty through dynamic
adjustment of DNS response deadline or to not delay DNS

responses for domains where dp shows no gains for overall
webpage load time – a subject of our future work.

V. DISCUSSION

Two possible concerns come to mind with widespread
adoption of dp. First, would dp probing introduce higher loads
on CDN servers thereby increasing queuing delays? Because
dp uses the light-weight TCP OPEN process and immediately
closes the connections after they are established, we believe
that the increase in network load, or CDN server resources
due to probing is not significant.

Second, does client-based server selection disregards the
existing DNS-based load balancing? Because dp selects CDN
servers only from among the set resolved by DNS infrastruc-
ture, CDNs retain control over which replica server a client
may connect to. As a result dp clients in different network
locations will probe different sets of CDN servers. While it is
possible that clients in the same location might select the same
fastest CDN server and potentially increase its queuing delays,
we plan to extend dp to avoid this situation by switching
to HTTP HEAD-based probing, which takes server queuing
delays into account.

Although we have demonstrated the benefits of dp in
accelerating Web services hosted on CDNs, our method is
applicable to other replicated server selection problems. To fa-
cilitate wide dp deployment we plan on integrating our method
with bind DNS software commonly used in many last mile
networks. Currently we make a standalone implementation of
dp available at http://github.com/msu-netlab/dp.

VI. RELATED WORK

In spite of several years of efforts to reduce network
latency, CDNs and content providers strive to deliver a
responsive experience to their users. In addition to evolving
DNS-based server selection for Web applications, CDN server
selection techniques for improving the delivery of live video
have also been explored as an alternative to DNS-based load
balancing [19][20]. Although, server selection for video and
Web content delivery are related to each other, we believe that
the techniques to accurately identify the best CDN servers for
both of these services need to consider different metrics (la-
tency vs. available bandwidth), because of difference in
application requirements. Therefore, we only discuss studies
that aim to improve server selection for Web applications.

A. Reducing DNS Lookup Time

Vulimiri et al. proposed a client-side tool for sending DNS
requests to multiple DNS servers and using the first received
DNS resolution on the client [15]. CoDNS is a similar tool that
distributes incoming DNS requests to multiple DNS servers to
mask the delay in DNS lookups [21]. However, in Figure 18,
we show that different DNS servers may direct clients to
CDN servers with different end-to-end latencies. Therefore,
directing clients to server in the first DNS resolution may not
always direct clients to the closest available CDN server.

Shang et al. proposed a tool to reduce the DNS cache miss
rate by exploiting similarity of requested Web domains to the
domains that already have a DNS resolution cached [22]. DNS

Fig. 43. Comparison of Web object load times
using LDNS and DNS-Proxy with warm-cache.

Fig. 44. Comparison of Web object load times
using LDNS and DNS-Proxy with cold-cache.

Fig. 45. Comparison of object load times using
CDN servers resolved by dp and Namehelp.

Pre-Resolve is another technique to eliminate DNS lookup
delay by resolving domain names proactively during Web
page rendering [23]. Although these two techniques reduce the
impact of DNS on webpage load time, they do not consider
performance variation between CDN servers, nor accuracy of
resolutions from different DNS servers.

B. DNS Server Selection from End-devices

Namehelp is a client-side tool to identify the DNS server
that (on average) directs clients to the fastest available CDN
servers [24]. Namehelp’s mechanism to identify the best DNS
server relies on user’s Web browser history, in that, Namehelp
resolves Web domains (accessed by the user in the past) from
multiple DNS providers. Based on the average performance
of CDN servers returned from different DNS servers for
Websites used in the past, Namehelp configures the client’s
default DNS server to the DNS server that directed the client
to servers with least latency on average. Namehelp is similar
to dp in that it measures the client’s latencies to multiple
CDN servers resolved by different DNS servers for client-side
server selection. However, we illustrate several differences in
server selection techniques used by dp and Namehelp, and
also show that dp direct clients to servers remarkably faster
than servers resolved by Namehelp, on average.

• In our experience with Namehelp we discovered
that in order to identify the best DNS server for a
client, Namehelp sends over 27000 DNS requests (of
size 80 bytes each) to different DNS servers every
15 minutes, followed by receiving a DNS response (of
size 150 bytes each) for each request, and finally sending
an HTTP HEAD request (of size 120 bytes each) to every
resolved server. We argue that, unlike dp, Namehelp
creates an undesired load on the last-mile network,
which could potentially impact the performance of other
applications running on the device.

• To improve the accuracy of server selection, Namehelp
sends an HTTP HEAD request to every resolved server.
However, based on our experience with dp we show in
Figure 39 that using TCP OPEN delay is more accurate
indicator of server performance and generates lesser
probing traffic than sending HTTP HEAD requests.

• Unlike dp, Namehelp does not compare client’s latencies
to different CDN servers within a DNS resolution, which
is important for minimizing the end-to-end latency
between clients and servers (as discussed in Section II-B).

• As shown in Figure 41, none of the DNS servers
used in our study directed clients to servers with least
end-to-end latency at all times. Therefore, we argue that
the Namehelp’s technique to resolve Web domains from
an identified best DNS server (instead of identifying the
best CDN server for each Web domain being resolved)
might not ensure that clients will always be directed to
fastest available CDN servers for all Web domains.

• Finally, unlike dp, Namehelp’s resolution technique
does not have a deadline within which it must resolve
the requested Web domain.

In light of these differences between Namehelp (Nh) and dp,
in Figure 45 we compare the average time to establish a TCP
connection, time to receive the first bit of HTTP response, and
the image download time from servers resolved by Namehelp
and dp. For this comparison study, we configured clients
to use Namehelp and dp one-by-one as their default DNS
servers within a short time period. Next, we opened CDN
URLs hosted on Akamai, Limelight, Level 3, and Reflected
Networks CDNs on Google Chrome browser’s incognito
window (to prevent object loading from cache). We first
resolved the Web domains from the configured DNS server,
followed by sending an HTTP GET request to download an
image of size 82 KB, 53 KB, 207 KB, and 32 KB from the
resolved Akamai, Limelight, Level 3, and Reflected Networks
CDN servers respectively. We show the average percentage
reduction in the overall object load time using dp on top
each dp bar. For different CDN providers, we show that from
an average of 25 DNS resolutions from Namehelp and dp
each, the time to open TCP connection (TCP OPEN), time to
receive first bit of HTTP response (HTTP HEAD), and image
download time from servers resolved by dp are about 50%
faster than the servers resolved by Namehelp on average.

C. CDN Load-balancing Techniques for Server Selection

A study by Shaikh et al. has shown benefits of providing
client’s IP address in the DNS request to Authoritative DNS
servers, to allow clients to connect with nearby servers [17].
EDNS protocol has similar motivation in that it also enables
CDN providers to direct users to nearby servers based on
the client’s IP subnet [13]. However, EDNS approach is
still limited by how many DNS providers and ISPs support
requests with EDNS [14].

A study by Kangasharju et al. compares the performance of
different DNS redirection techniques, such as full redirection
and selective redirection, used by CDN providers to reduce the

impact of network latency on Web applications [25]. Their
study shows that full redirection has superior performance
over selective redirection, since selective redirection has an
overhead to maintain which CDN server has what content in its
cache, which may not be up-to-date and accurate at all times.

D. Relative Network Positioning for Server Selection

Previous studies have investigated the benefits of using
network coordinate systems (NCS) to estimate the network
latency between arbitrary end hosts [26][27][28]. Such NCS
techniques also enable CDN providers to estimate the network
latency between clients and CDN servers to increase the accu-
racy of DNS-based server selection techniques [29]. However,
a study by Choffnes et al. shows that network coordinate sys-
tems are often not accurate when used on edge networks [29].

CDN-based Relative Network Positioning (CRP), a tool by
Su et al. shows that clients could be directed to closest CDN
servers by comparing the cosine similarities between clients
and different available CDN servers [30]. However, our other
recent work on server selection shows that CRP technique
is often not accurate in predicting the closest servers for
clients [31].

VII. CONCLUSIONS

Web application performance is affected by DNS resolutions
to distant CDN servers. Although, DNS-based server selection
may often direct clients to nearby CDN replicas, we show
that current techniques could be improved to speed up the
delivery of content. Therefore, we argue that clients are best
positioned in the network to choose closest CDN servers.
We propose DNS-Proxy (dp), a client-side tool that probes
each resolved CDN address and directs clients to the fastest
available servers. Effectively, dp shares load balancing
functionality with CDNs by selecting from a set of resolved
servers. Our measurement study on CDN infrastructure
deployed by five major CDN providers shows that dp reduces
webpage load time by 29% on average. If dp has already
resolved a Web domain, the reduction in webpage load time
is as much as 40%. Finally, dp reduces the download time
of individual static Web objects by as much as 43%. Overall
we believe dp enables a more effective use of existing CDN
infrastructure and represents a complementary strategy to a
continual increase of geographic content availability.

ACKNOWLEDGEMENTS

The authors would like to thank Mario Sanchez for his help
in setting up the experiments on Dasu, and Ajay Miyyapuram
and Kanika Shah for suggested improvements to an early
version of this manuscript. Further, the positions, strategies
or opinions reflected in this article are those of the authors
and do not necessarily represent the positions, strategies or
opinions of Akamai.

REFERENCES

[1] T. Hopkins, “What Are The Benefits Of Using a CDN?.”
http://www.rackspace.com/knowledge center/frequently-asked-
question/what-are-the-benefits-of-using-a-cdn, Sept. 2012.

[2] B. Forrest, “Bing and Google Agree: Slow Pages Lose Users.” http:
//radar.oreilly.com/2009/06/bing-and-google-agree-slow-pag.html, Jun.
2009.

[3] R. L. Burt, “Why are images not loading?.” https://www.facebook.com/
help/community/question/?id=10100214862890089&ref=notif¬if t=
answers answered, Jun. 2013.

[4] M. Belshe, “More Bandwidth Does not Matter (much).”
https://docs.google.com/a/chromium.org/viewer?a=v&pid=sites&srcid=
Y2hyb21pdW0ub3JnfGRldnxneDoxMzcyOWI1N2I4YzI3NzE2, Apr.
2010.

[5] I. Grigorik, “Latency: The New Web Performance Bottleneck.”
https://www.igvita.com/2012/07/19/latency-the-new-web-performance-
bottleneck/, Jul. 2012.

[6] X. S. Wang, A. Balasubramanian, A. Krishnamurthy, and D. Wetherall,
“Demystify page load performance with wprof,” in USENIX NSDI, Apr.
2013.

[7] M. P. Wittie, V. Pejovic, L. Deek, K. C. Almeroth, and B. Y. Zhao,
“Exploiting Locality of Interest in Online Social Networks,” in ACM
CoNEXT, Nov. 2010.

[8] M. Belshe and R. Peon, “SPDY Protocol.” http://tools.ietf.org/html/draft-
mbelshe-httpbis-spdy-00, Feb. 2012.

[9] “Everything You Need To Know About CDN Load Balancing.”
http://www.webtorials.com/main/resource/papers/Dyn/paper1/CDN-
LoadBalancing.pdf, Sept. 2014.

[10] “Traffic Director.” http://dyn.com/traffic-director/, Sept. 2014.
[11] A. Barbir, B. Cain, R. Nair, and O. Spatscheck, “Known Content

Network (CN) Request-Routing Mechanisms.” https://tools.ietf.org/html/
rfc3568, Jul. 2003.

[12] M. A. Sanchez, J. S. Otto, Z. S. Bischof, D. R. Choffnes, F. E.
Bustamante, B. Krishnamurthy, and W. Willinger, “Dasu: Pushing Ex-
periments to the Internet’s Edge,” in USENIX NSDI, Apr. 2013.

[13] S. Souders, “Extension Mechanisms for DNS (EDNS(0)).” http://tools.
ietf.org/html/rfc6891, Apr. 2013.

[14] J. P. Rula and F. E. Bustamante, “Behind the Curtain - Cellular DNS
and Content Replica Selection,” Nov. 2014.

[15] A. Vulimiri, P. B. Godfrey, R. Mittal, J. Sherry, S. Ratnasamy, and
S. Shenker, “Low Latency via Redundancy,” in ACM CoNEXT, Dec.
2013.

[16] V. N. Padmanabhan, S. Ramabhadran, S. Agarwal, and J. Padhye, “A
Study of End-to-end Web Access Failures,” in ACM CoNEXT, Dec.
2006.

[17] A. Shaikh, R. Tewari, and M. Agrawal, “On the effectiveness of dns-
based server selection,” in IEEE Infocom, Apr. 2001.

[18] C. Pelsser, L. Cittadini, S. Vissicchio, and R. Bush, “From Paris to
Tokyo: On the Suitability of Ping to Measure Latency,” in ACM IMC,
Oct. 2013.

[19] X. Liu, F. Dobrian, H. Milner, J. Jiang, V. Sekar, I. Stoica, and H. Zhang,
“A Case for a Coordinated Internet Video Control Plane,” in ACM
SIGCOMM, Aug. 2012.

[20] M. K. Mukerjee, J. Hong, J. Jiang, D. Naylor, D. Han, S. Seshan, and
H. Zhang, “Enabling Near Real-time Central Control for Live Video
Delivery in CDNs,” in ACM SIGCOMM, Aug. 2014.

[21] K. Park, V. S. Pai, L. Peterson, and Z. Wang, “CoDNS: Improving
DNS Performance and Reliability via Cooperative Lookups,” in USENIX
OSDI, Dec. 2004.

[22] H. Shang and C. E. Wills, “Piggybacking Related Domain Names to
Improve DNS Performance,” Computer Network, vol. 50, Aug. 2006.

[23] G. Developers, “Pre-Resolve DNS.” https://developers.google.com/
speed/pagespeed/service/PreResolveDns, Apr. 2015.

[24] J. P. Rula and F. E. Bustamante, “Namehelp Mobile.” http://aqualab.cs.
northwestern.edu/projects/237-namehelp-mobile, Aug. 2014.

[25] J. Kangasharju, K. W. Ross, and J. W. Roberts, “Performance Evaluation
of Redirection Schemes in Content Distribution Networks,” in Computer
Communications, 2000.

[26] F. Dabek, R. Cox, F. Kaashoek, and R. Morris, “Vivaldi: A Decentralized
Network Coordinate System,” ACM SIGCOMM, Sept. 2004.

[27] T. S. E. Ng and H. Zhang, “Predicting Internet Network Distance with
Coordinates-Based Approaches,” in IEEE INFOCOM, Apr. 2001.

[28] B. Wong, A. Slivkins, and E. G. Sirer, “Meridian: A Lightweight Net-
work Location Service Without Virtual Coordinates,” ACM SIGCOMM,
Aug. 2005.

[29] D. R. Choffnes, M. A. Sanchez, and F. E. Bustamante, “Network
Positioning from the Edge: An empirical study of the effectiveness of
network positioning in P2P systems,” in IEEE INFOCOM, Mar. 2010.

[30] A. jan Su, D. Choffnes, F. E. Bustamante, and A. Kuzmanovic, “Relative
Network Positioning via CDN Redirections,” in ICDCS, Jun. 2008.

[31] S. Micka, U. Goel, H. Ye, M. P. Wittie, and B. Mumey, “Internet Latency
Estimation Using CDN Replicas,” in IEEE ICCCN, Aug. 2015.

