
Adaptive Load Balancing in KAD

Damiano Carra

University of Verona

Verona, Italy

damiano.carra@univr.it

Moritz Steiner

Bell Labs

Alcatel-Lucent, USA

moritz@bell-labs.com

Pietro Michiardi

Eurecom

Sophia Antipolis, France

pietro.michiardi@eurecom.fr

Abstract—The endeavor of this work is to study the impact
of content popularity in a large-scale Peer-to-Peer network,
namely KAD. Armed with the insights gained from an extensive
measurement campaign, which pinpoints several deficiencies of
the present KAD design in handling popular objects, we set off to
design and evaluate an adaptive load balancing mechanism. Our
mechanism is backward compatible with KAD, as it only modifies
its inner algorithms, and presents several desirable properties:
(i) it drives the process that selects the number and location of
peers responsible to store references to objects, based on their
popularity; (ii) it solves problems related to saturated peers, that
entail a significant drop in the diversity of references to objects,
and (iii) if coupled with an enhanced content search procedure,
it allows a more fair and efficient usage of peer resources, at
a reasonable cost. Our evaluation uses a trace-driven simulator
that features realistic peer churn and a precise implementation
of the inner components of KAD.

I. INTRODUCTION

The design of large scale distributed systems, such as Peer-

to-Peer (P2P) networks, poses many challenges due to the

heterogeneity of its components. In particular, many systems

based on distributed hash tables (DHTs) have been proposed to

manage such heterogeneity, primarily focusing on node churn.

The dynamic nature of arrivals and departures of peers, and

the consequent heterogeneous session times, represents one of

the main, and better studied, characteristics of P2P networks.

In addition to churn, the research community has also

considered other types of heterogeneity, such as resource

availability (e.g., bandwidth capacity): this led to the design

of many load balancing schemes that target a fair contribution

of all peers, with their resources, to the P2P network.

In this work, we focus on the heterogeneity in object

(i.e., content) popularity. The crux in handling heterogeneous

popularity is to design a load balancing mechanism that tailors

the amount of load each peer must support in an adaptive

way. However, current proposed solutions usually consider a

statically pre-set number of peers to use for load balancing.

Instead, to support popularity dynamics, the system should

determine the number of peers dedicated to a particular object

according to its current popularity.

The endeavor of this work is to realize an adaptive load

balancing mechanism for a widely deployed DHT system,

namely KAD. While many DHT systems have been proposed

in the literature, only few of them have been practically

implemented and are being used by millions of users. As such,

focusing on KAD offers a unique opportunity to understand

in detail the effects of object popularity on an operational

network, and measure the inadequacy and the weaknesses of

its current design.

The main contributions of our work can be summarized as

follows:

• We establish an extensive measurement campaign to

evaluate how KAD manages popular objects. Our results

indicate that a large fraction of references to popular

objects (pointing to the peers storing such objects) are

lost due to peer saturation. Moreover, our measurements

identify the KAD lookup procedure as one of the main

culprit of the load imbalance that occurs when objects

are placed and retrieved;

• We design a load balancing scheme for KAD which adapts

the number of peers used for storing object references

based on their popularity. The main constraint we con-

sider in our design is to work exclusively on algorithmic

changes to KAD, without modifying the underlying pro-

tocol by introducing new messages;

• We improve the content searching procedure of KAD

to better exploit object replication. Our goal here is to

decrease the burden imposed on few peers by the current

KAD implementation and spread the load due to content

search on object replicas;

• We evaluate our proposed schemes (load balancing and

search) with a trace driven simulator which is able

to reproduce realistic peer arrivals and departures; our

results show that our load balancing scheme is effective

in distributing the load among peers in the key space, and

the searching procedure is able to find objects referenced

by a large number of peers, with low penalty in terms of

content search overhead.

We note that, while the schemes presented in this paper are

specific to KAD, the main ideas under the adaptivity and the

exploitation of the available replicas can be generalized and

used in other systems. The remainder of the paper in organized

as follows. In Sec. II we provide some background on KAD,

on the content management and we discuss the related work.

In Sec. III we provide a set of measurement results that give

us insights on the current implementation and performance of

KAD in case of popular keywords. The weaknesses highlighted

in this section will help us in design an adaptive load balancing

scheme which we present in Sec. IV. We evaluate the proposed

scheme in Sec. V, and we conclude in Sec. VI.



II. BACKGROUND AND RELATED WORK

A. The Kademlia DHT System

KAD is a DHT protocol based on the Kademlia framework

[9]. Peers and objects in KAD have an unique identifier,

referred to as KAD ID, which is 128 bit long. The KAD IDs

are randomly assigned to peers using a cryptographic hash

function. The distance between two entities – peers, objects –

is defined through the bitwise XOR of their KAD IDs.

The basic operations performed by each node can be

grouped into two sets: routing management and content man-

agement. Routing management takes care of populating and

maintaining the routing table. The maintenance requires to

update the entries – called contacts – and to rearrange the

contacts accordingly. A peer stores only a few contacts of

peers that are far away in the KAD ID space and increasingly

more contacts to peers closer in the KAD ID space. If a contact

refers to a peer that is offline, we define it as stale. The routing

management is responsible also for replying to route requests

sent by other nodes during the lookup phase (Sect. II-B). Since

in this paper we focus on content management, we do not go

into the details of the routing procedure – the interested reader

is referred to [17].

Content management takes care of publishing the refer-

ences to the objects the peer has, as well as retrieving

the references to the objects the peer is looking for. KAD

implements a two-level publishing scheme; a reference to an

object comprises a source and W keywords:

• The source, whose KAD ID is obtained by hashing the

content of the object, contains information about the

object and the pointer to the publishing node;

• Keywords, whose KAD IDs are obtained by hashing the

individual keywords of the object name, contain (some)

information about the object and the pointer to the source.

Hereinafter, we will refer to source and keywords considering

the corresponding KAD IDs. We call publishing node the node

that owns an object and host nodes the nodes that have a

reference to that object. When a node wants to look for an

object, it first searches for the keywords and does a lookup to

obtain all the pointers to different sources that contain these

keywords. It then selects the source it is interested in, looks

up that source to obtain the information necessary to reach the

publishing node.

Since references are stored on nodes that can disappear

at any point in time, the publishing node publishes multiple

copies (the default value is set to 10) of each reference –

source and keywords.

B. Content Management

Content management procedures take care of publishing and

searching processes, which leverage on a common function

called Lookup. Given a target KAD ID, the Lookup procedure

is responsible for building a temporary contact list, called

candidate list, which contains the contacts that are closer to

the target. KAD creates a thread for each keyword and source,

so that the lookup is done in parallel for the different target

KAD IDs. The list building process is done iteratively with the

help of different peers. Here we summarize the main steps of

the Lookup procedure: for a detailed explanation, we refer the

interested reader to [14][15].

Initialization: The (publishing or searching) peer first re-

trieves from its routing table the 50 closest contacts to the

destination, and stores them in the candidate list. The contacts

are ordered by their distance, the closest first. The peer sends a

request to the first α = 3 contacts, asking for β closer contacts

contained in the routing tables of the queried peers (in case

of publishing β = 4, while in case of searching β = 2). Such

request is called route request. A timeout is associated to the

Lookup process, so that, if the peer does not receive any reply,

it can remove the stale contacts from the candidates and it can

send out new route requests.

Processing Replies: When a response arrives, the peer inserts

the β returned contacts in candidate list, after having checked

that they are not already present. Considering the modified

candidate list, a new route request is sent if (i) a new contact

is closer to the target than the peer that provided that contact,

and (ii) it is among the α closest to the target.

Stabilization: The Lookup procedure terminates when the

responses contain contacts that are either already present in

the candidate list or further away from the target than the

other top α candidates. At this point no new route request is

sent and the list becomes stable.

Note that, in every step of the Lookup procedure, only the

peers whose KAD ID share at least the first eight bits with the

destination are considered: this is referred to as the tolerance

zone. When the candidate list becomes stable, the peer can

start the publishing or searching process. In case of publishing,

the peer sends a ‘store reference’ message to the top

ten candidates in the candidate list. As a response to each

publishing message, the peer receives a value called load. Each

host peer can accept up to a maximum number of references

for a given keyword or source, by default set to 50,000. The

load is the ratio between the current number of references

published on a peer and 50,000 (times 100). If the host node

has a load equal to 100, even if it replies positively to the

publishing node, it actually discards the publishing message;

therefore, popular references may not be all recorded.

In case of searching, the peers sends a ‘search

reference’ message to the first candidate. If the response

contains 300 objects with the requested reference, the process

stops; otherwise, the peer iterates through the candidates until

it has reached 300 objects. Note that a host node may have

up to 50,000 references for a given keyword or source: in the

reply, the host node will select randomly 300 references.

C. Related Work

Load balancing for DHT systems has been extensively stud-

ied in the past: in this section we focus on few representative

works. Many solutions [2][3][6] focus on the balancing of the

responsibility zone, assuming a load uniformly distributed in

the identifier space, while we consider the problem due to



skewness in the popularity of the objects.

In order to cope with heterogeneity (of the peer resources,

of the object popularity), there exist many works based on the

concept of virtual servers [5][11]: such schemes have a fixed

number of possible peers to be used to balance the load, while

our solution varies the number of storing peers based on the

popularity of the objects. The work in [18], which is focused

on KAD, is also based on a maximum number of peers that

can be used for load balancing. Moreover, they introduce a

set of new messages that changes the protocol. Our solution,

instead, is based solely on the currently available messages on

KAD, without changing the protocol.

Other works [20][21] consider the transfer of the content

from overloaded peers to underloaded ones (content migra-

tion): the load balancing is initiated by the storing peers (host

nodes) and incurs in a high overhead. In our scheme, the

load balancing is performed by the publishing peers, without

any additional overhead w.r.t. the the basic KAD scheme. The

authors in [8] – another work specific to KAD – propose a load

balancing scheme which is not adaptive, and does not avoid

the loss of information.

III. MOTIVATIONS

The aim of a DHT is to uniformly map objects to the key

space. Nevertheless, objects are not all equal. Depending on

the popularity of the objects, the publishing or searching traffic

may vary significantly. In this section we investigate the impact

of the heterogeneity of the object popularity on KAD (in the

implementation of the eMule / aMule software) through an

extensive measurement campaign. Armed with the insights we

gain on the inner design choices of KAD, we motivate the

need for an adaptive load balancing mechanism and improved

content searching.

A. Load Distribution

The number of references a peer can hold for a given

object is limited to a maximum value (50,000): what happens

when this limit is reached? To understand this aspect, we have

collected the values of the load for different popular keywords.

For the sake of experimental reproducibility, the keywords we

consider are static popular keywords, i.e., keywords that are

usually present in the file names, such as “the” or “mp3.”

It is reasonable to assume that the results we present here

can be considered equivalent to those that can be obtained

during transient peaks of popularity for other keywords (such

as “ubuntu” immediately after a new release).

For the measurement campaign, we used a modified version

of the KAD crawler Blizzard [17]. Given a keyword, Blizzard

extracts the eight most significant bits and iteratively crawls

the corresponding zone. In other words, the crawler considers

only the tolerance zone that contains all the possible host

peers on which a keyword can be published. The output of

Blizzard is the list of all the peers in the eight-bit zone that

are alive (stale contacts are removed): at this point we send a

publish message to all peers, obtaining as a response the load

from each of them. We collect the replies and we order them

according to the XOR-distance to the KAD ID of the keyword,

obtaining a snapshot of the current load distribution.

Figure 1 shows the results for two popular keywords

(“dvdrip” and “mp3”). We tested such keywords (and others,

not shown here for space constraints) in different days and

hours within a day, obtaining similar results. The x-axis

contains the distance from the target KAD ID as a percentage

of the maximum distance: since the KAD ID is composed by

128 bits, a peer with all the bits of the KAD ID different

from the bits of the KAD ID of the keyword (except for the

first eight, since we focused on an eight-bit zone) would have

distance dmax = 2120−1. A peer with all the bits of the KAD

ID different from the bits of the KAD ID of the keyword,

except for the first twelve, would have distance d = 2116 − 1,

which in percentage becomes d/dmax = 6.25%.

 0

 25

 50

 75

 100

 0  10  20  30  40  50

L
o

ad
 (

%
)

XOR-distance (%)

keyword: mp3
 0

 25

 50

 75

 100
keyword: dvdrip

Fig. 1. Load distribution for two popular keywords.

For clarity of presentation, we have divided the x-axis into

bins, therefore each bar in the figure represents the load of

approximately 8-10 peers (the value is the mean load of such

peers). For very popular keywords, not only the closest peers

to the target are overloaded, but there is a high fraction of peers

away from the target that has significant load. The snapshot

clearly can not capture the dynamics of the zone, i.e., peer

arrivals and departures: the effect of node dynamics determines

the irregularity in the shape of the load distribution, but it can

not justify the high load in peers far from the target. As an

example of an object with low popularity, in Fig. 2 we show

the distribution of the load of the keyword “dexter,” where the

replicas are roughly concentrated around the target.

 0

 25

 50

 75

 100

 0  10  20  30  40  50

L
o

ad
 (

%
)

XOR-distance (%)

keyword: dexter

Fig. 2. Load distribution for the slightly popular keyword.



At a first glance (cf. Figs. 1 and 2), it appears that KAD

inherently distributes the load among increasingly distant peers

when objects are popular. Unfortunately, as we will see in

Sec. III-C, this effect has not been included intentionally in

the design of KAD, but derives from an imperfect Lookup

procedure. More to the point, despite the spread of the

references in case of popular objects, the peers closest to the

target are overloaded and need to handle more management

traffic (publishing and searching messages) than other peers.

In order to quantify the amount of management traffic hitting

a hot spot, we perform the following additional measurement

study. We assign an instrumented aMule client a KAD ID close

to the KAD ID of a popular keyword, and we register all

the incoming traffic. The management traffic amounts to 3.5

publishing messages per second, and 0.3 searching messages

per second. The corresponding amount of incoming traffic is

approximately equal to 30 kbit/s. Even if this value seems

affordable by most today’s Internet connections, we note that

the actual available bandwidth of ADSL users may be less

than 500 kbit/s, therefore such traffic decreases by 6% the

available bandwidth to peers laying in a hot spot. Besides the

absolute value of such management traffic, as we will show

next, the publishing traffic may result in wasted resources.

B. Reliability and Diversity

The publishing peer, for reliability reasons, publishes ten

replicas of each object. In case of popular objects, it may

happen that the host peer has reached its maximum number

of references: in this case, the host peer replies positively

to the publishing request, but actually discards the reference.

From the publishing node point of view, this translates into

a decreased reliability: the probability over time to find a

reference to the publishing peer will be significantly lower

in case of popular objects w.r.t. non popular objects – the

interested reader is referred to [4] for a detailed evaluation of

the impact of the number of replicas on the reliability.

From the host peer point of view, once the maximum

number of objects is reached, all the following publishing

traffic represents a waste of resources, such as the download’s

bandwidth for receiving the messages, the processing power

for processing them, and the upload’s bandwidth for replying.

With the instrumented client used to record the traffic (cf.

Sect. III-A) we have monitored the publishing messages over

time for two popular keywords. Fig. 3 shows the load and the

frequency of the publishing requests over time. Note that a

single publishing message may contain multiple publishing

requests, since a keyword may be associated to many files.

Our measurements show that after only few tens of minutes

after joining the system the host peer is saturated; upon

saturation, all the publishing messages represent wasted traffic:

due to the limit in the number of stored objects, a peer in a hot

spot is not able to record all the published objects, decreasing

the reliability. However, reliability is not the unique concern

that affects KAD: the publishing phase is complemented by

the searching phase. The searching peer starts querying the

top ranked peers in its candidate list and, if it obtains at least

 1

 10

 100

 1000

 10000

00 01 02 03 04

R
ef

er
en

ce
s/

m
in

Time (hours)

keyword: the
keyword: mp3

 0

 25

 50

 75

 100

L
o

ad
 (

%
)

keyword: the
keyword: mp3

Fig. 3. Load and publishing frequency over time registered by our
instrumented client.

300 references, the searching phase stops. For popular objects,

the first peer in the candidate list will have most probably

more that 300 references (even if it has just arrived, it takes

few minutes to receive more than 300 publishing messages).

Therefore, even if the references are replicated ten times, if

all the replicas are on saturated nodes, the publishing peer

may be never be contacted by other peers, and it will not

contribute with its resources to the P2P system. Let S(t) be

the set of peers that owns a specific object at time t. Due

to churn and, in case of popular keywords, due to the limited

number of references held by a host peer, the peers close to the

target will have a subset S′(t). Since the searching peers focus

on a limited set of peers close to the target, they will obtain

references from S′(t), instead of from S(t). We call diversity

the ratio between |S(t)′| and |S(t)|: the system should ensure

a diversity close to one, despite churn and keyword popularity.

If we look at a popular object, and we observe a short

period during which the churn can be considered negligible,

a diversity smaller than one has a direct impact on the

performance of the system, precisely on the actual content

transfer phase. The searching peers, in fact, retrieve references

belonging to S′(t), i.e., they will download the content from

the peers in S′(t). If such peers in S′(t) have limited resources,

they will put the searching peers in a waiting queue, increasing

the overall download time, while other peers in S(t) \ S′(t)
will stay idle instead of serving the content. In other words,

the system is not able to exploit all the available resources and

it does not work using its full service capacity.

C. Accuracy of the Candidate List

In case of popular objects, we have shown that the refer-

ences may be spread over a wide portion of the KAD ID space.

For instance, in Fig. 1, for the keyword “dvdrip” we can see

that there are peers at 42% XOR distance (which corresponds

to a peer sharing the first ten significant bits with the target)

with a load equal to five, which means approximately 2500

references. At the time of the snapshot, the number of peers

between such peers and the target is approximately 800. Since

churn alone may not justify such a spread, this result requires



a deeper analysis of the publishing procedure.

In this section we investigate the effectiveness of the candi-

date list building process as implemented in the Lookup pro-

cedure. The candidate list represents a snapshot of the current

peers around a target that the publishing (or the searching) peer

builds with the help of other nodes. This process is similar

to the process of crawling KAD: the designers need to face

different trade-offs, such as the accuracy of the results versus

the traffic generated, or versus the time it takes to build the list.

In KAD, the building process stops (i.e., the candidate list is

considered stable) when the peers does not receive any contact

closer than the top α (α = 3 by default) already present in

its candidate list for three seconds. This means that the focus

is on the top positions of the candidate list, while the other

positions may not be accurate.

Let L be the list of peers whose KAD IDs shares the first 8

bits with the KAD ID of a given target; L is ordered according

to the XOR-distance to the target, closer first. Let L′ be the

candidate list built by the Lookup procedure. The list L′ is a

(ordered) subset of L. For simplicity, instead of the element

itself, L′ contains the order of the elements in L. For instance,

given L = {p1, p2, p3, p4, p5}, L′ can be {2, 3, 5}, which

means that L′ contains the elements p2, p3 and p5.

In order to evaluate the accuracy of L′ w.r.t. L, we set up a

measurement campaign using Blizzard. We place a content in

the shared folder of an instrumented aMule client: this triggers

the publishing process, whose related messages (requests and

replies) we register. In the meantime, we crawl with Blizzard

the KAD ID zone corresponding to the keywords and source of

the content. The publishing process and the crawling process

last for 2 minutes, making the effect of churn negligible. With

the output of the crawl we build L, while with the logs of

our instrumented client we build L′. We repeat this process

several times, for different keywords and sources, in order to

gain statistical confidence. An example of the outcome of the

experiment is given in Table I (basic Lookup): for a given row,

we show the index of L′.

TABLE I
EXAMPLES OF L′ .

ID order in L (basic Lookup)

A 1 2 4 5 6 21 35 95 187 310

B 1 3 10 12 15 58 84 134 456 1232

C 2 6 13 14 39 40 43 77 89 716

ID order in L (improved Lookup)

D 2 3 6 9 10 11 12 15 20 27

E 1 2 4 6 7 8 9 10 11 13

F 1 4 6 7 8 10 13 14 17 19

While the first few positions contain almost the same

elements of L, the other elements of L′ are scattered on

a wider KAD ID space. In order to quantify the accuracy

of L′ w.r.t. L, we estimate the probability that an element

of L is chosen during the candidate list building process.

For ease of representation, we assume that the candidate list

building process can be modeled as a Bernoulli trial process,

with success probability pi that depends on the position in

L′. For instance, for the first element of L′ we pick the

elements from L with probability p1 = 0.55; once the first

element is selected, we consider the elements of L with

probability p2 = 0.5, and so forth. For the estimation of the

probabilities pi, we consider the results of the measurements

and we take the difference between the positions in L for two

consecutive elements of L′. Fig. 4 shows pi, the probability

to pick an element from L to be put in the position i of the

list L′, along with the 95% confidence interval (obtained with

approximately 30 independent experiments). The graph shows

that the Lookup procedure is accurate in selecting the first

2-3 positions, but the elements in the lower positions of L′

are far from the target. The candidate list building process,

therefore, revealed to be imperfect and inaccurate, especially

for the lower positions: this explains the spread of the reference

for popular keywords.

 0

 0.2

 0.4

 0.6

 0.8

 1

 2  4  6  8  10

E
st

im
at

ed
 p

ro
b

ab
il

it
y

Candidate list rank

basic scheme
improved Lookup

Fig. 4. Estimated probability for building L′.

Such an inaccurate candidate list has several problems, e.g.,

the ninth and tenth replicas are published so far from the

target that they may be never considered during the search

phase. A redesign of the Lookup procedure is out of the

scope of this paper. Note that the authors in [8] impute the

inaccuracy to the routing management, while our experience

indicates that the main issue lies in the Lookup procedure.

To support this claim, we report here our experience during

the tests, in which we have modified the values of some

constants in the Lookup procedure to understand their role

in the lookup process. During the Lookup procedure the peer

asks for β closer contacts contained in the routing tables of

other peers. By increasing the value of β, it should be possible

to increase the accuracy of the candidate list. For instance,

we set β = 16 and obtained the probabilities pi labeled as

“improved Lookup” in Fig. 4 – examples of the candidate lists

can be found in Table I (improved Lookup). We notice that the

accuracy of the list in the last positions is increased1. Rather

than trying to increase further the accuracy, we will exploit

such inaccuracy in the design of our load balancing scheme.

1The modification of the parameter β has been done to test if it is possible
to increase the accuracy, therefore we have not evaluated the impact of β on
the traffic generated by the application; as we said, the Lookup procedure
would need a complete redesign, which is out of the scope of this paper.



D. Summary of the Motivation

The set of measurements campaigns have highlighted dif-

ferent issues on the current KAD procedures related to content

publishing and content searching. In case of popular objects,

• some peers must support a management traffic that

decreases the available bandwidth, which represents a

mistreatment of peers residing in a hot spot;

• many references are lost, since they are published on

overloaded peers which discard them: as such, diversity

decreases;

• the search phase considers only the peer closest to the

target, without considering that some references may be

found on other peers. This problem has a broader impact

than it first appears: content transfers are limited to a

small number of peers, as compared to the whole set of

peers hosting the content, which imply increased delays.

In practice, KAD has been designed without considering het-

erogeneous content popularity. Note that a naive solution in

which we increase the maximum number of stored references

on peers would not solve the above mentioned issues. As a

general guideline, the design of the publishing process should

consider its counterpart, the searching process. With a joint

design, it is possible to take into account aspects, such as

diversity, or dynamic load balancing, and provide an efficient

solution that a separated design approach may not obtain.

In the next sections we will show how to exploit the

imperfect design of the current KAD Lookup procedure to

provide a dynamic load balancing scheme, that not only

decreases the burden on hot spots, but also increases diversity.

IV. ADAPTIVE PUBLISHING SCHEME

In the previous section we have highlighted the main

characteristics and weaknesses of the current KAD procedures:

the Lookup procedure – responsible for the candidate list

creation – and the publishing and searching procedures. Even

if the inaccuracy of the candidate list may seem a problem,

it actually represents a way to perform load balancing: the

probability that two publishing peers have the same candidate

list at the same time is low, thus they publish their replicas

on different peers. This is true only starting from the third

- fourth position onward, while usually the first three - four

positions are accurate, i.e., they are the almost same for the

different publishing peers.

In our design, we exploit the inaccuracy of the candidate

list: since we have shown that with the basic KAD scheme

the accuracy is extremely low for the last positions in the

candidate list, we assume an improved Lookup procedure (as

shown in Fig. 4). This can be obtained by simply modifying

one of the parameters. We then focus on the publishing and the

search procedures to perform an adaptive load balancing based

on object popularity. We modify only the algorithms, without

introducing new messages or modifying the existing ones, so

that our solution is completely backward compatible with the

current KAD protocol. Moreover, for non-popular objects, the

proposed solution behaves exactly as the current KAD scheme.

Procedure Publish

Data: list: candidates /* peers ordered by their
distance to target */

Data: int: curr /* current candidate */
Data: bool: direction /* used to decide how to

iterate through the candidates */
Data: list: thresholds /* for deciding if an

object is popular or not */
Data: int: maxLoad

Initialization:1

curr = 9;2

direction = backward;3

maxLoad = 80;4

5

for i← 0 to 9 do6

contact ← candidates.get(curr);7

load ← publish(contact);8

if curr < 10 and load > thresholds.get(curr) then9

direction = forward;10

curr = 9;11

if curr ≥ 10 and load > maxLoad then12

curr + = (10 - curr%10);13

if direction == forward then14

curr++;15

else16

curr−−;17

A. Content Publishing

Given the candidate list produced by the Lookup procedure,

the publishing procedure tries to publish ten replicas of the

reference. The basic idea of our solution is as follows: we

use the value of the load (which is returned by a peer as

a response to a publish) as an indication of popularity, and

we drive the selection of the candidates according to it. In

case of popular objects, instead of trying to publish on the

best host peers, the publishing peer should choose candidates

progressively far from the best target.

In order to obtain the load, the publishing peer needs to

publish the content: since we want to avoid the risk to overload

the closest host node, instead of publishing starting from

the first peer in the candidate list, the publishing process

should start from the tenth peer. If the load is below a certain

threshold, the publishing peer publishes the next replica on the

ninth candidate, otherwise it considers the candidates with a

rank worst than the tenth.

The procedure Publish shows the details of our solution.

As input, we provide a vector of thresholds used to identify if

object is popular. Such thresholds are set only for the first ten

positions and they are higher and higher as we get close to the

top ranked candidates. In particular, let Dmax and Dmin the

thresholds for the first and the tenth candidates respectively.

For simplicity we assume that the growth of the threshold

is linear with the rank of the candidates, i.e., the threshold

for the ith candidate, Di, i = 0, 1, . . . , 9, is given by Di =
Dmax −

(

Dmax − Dmin

)

i/9.

If the publishing peer finds a candidate with a load greater

than the threshold, then it publishes the remaining replicas

starting from the eleventh node and onward. Note that, if the



load is above threshold at the beginning of the publishing

process, the object is considered very popular, and all the

remaining replicas will be more scattered (since the publishing

node will consider up to the 19th candidate). If the threshold

is never exceeded, the publishing node publishes on the top

ten ranked peers, as in the current KAD implementation.

If the object is extremely popular, then the candidates that

usually occupy the 11th position up to the 19th position may

become overloaded too. In this case, we have introduced a

maximum value of the load, equal to 80: if this value is

reached, we start considering the candidates from the 20th

position up to the 29th, and so forth. In this way, as the

number of publishers increases, we add more and more peers

for storing their references.

We would like to stress the fact that the procedure

Publish has an extremely simple form thanks to the specific

way in which the candidate list is built. In Sec. IV-C we will

discuss how to modify the approach in case of an extremely

accurate candidate list. Moreover, our solution represents a

modification of an existing (and widely deployed) system:

for this reason we cannot introduce a set of mechanisms or

messages that would facilitate the load balancing process – for

instance, we may introduce a message for knowing the load of

a host peer without the need to publish on it. Our contribution

lies in the design of a load balancing scheme based solely on

the available KAD messages.

B. Content Search

In the current KAD implementation, when a peer is looking

for references to an object, it stops the search process as soon

as it receives at least 300 references. A single reply may

contain such 300 references, therefore a single query may be

sufficient. In case of popular objects, it is possible to find peers

that hold more than 300 references even if they are not close

to the KAD ID of the object. Such peers are rarely used, with

a consequent decrease in diversity.

The simplest solution to overcome this limitation is to

introduce some randomness in the searching process. Given

the candidate list, instead of considering the first candidate,

the searching node should pick randomly among the first ten

candidates. If the answer contains 300 references, the process

stops. Otherwise, the searching node needs to pick another

candidate. The procedure Search shows the details of our

proposed solution.

In the procedure, we use the following heuristic: the search-

ing node tries twice with a random candidate; if it does not

receive enough references, it falls back to the basic scheme,

i.e., it starts from the first candidate. This heuristic derives

from the fact that, if a candidate has less than 300 references,

there could be two reasons: either the object is not popular,

or the the candidate is just arrived and it had little time

to record the references. In case of non-popular object, this

process results in a overhead. We believe that, thanks to

the gain in terms of diversity and load balancing in case of

popular objects, such overhead is a fair price that can be paid:

measurement studies [10] have shown that few popular files

Procedure Search

Data: list: candidates /* peers ordered by their
distance to target */

Data: list: references /* obtained refs */
Data: int: maxRandomTentatives
Data: int: maxIndex

Initialization:1

maxRandomTentatives = 2;2

maxIndex = 10;3

references = {∅};4

5

while references.size() < 300 and candidates not empty do6

if maxRandomTentatives > 0 then7

contact ← candidates.getRandom(maxIndex);8

references.add(search(contact));9

maxRandomTentatives−−;10

else11

contact ← candidates.getFirst();12

references.add(search(contact));13

candidates.remove(contact);14

(approximately 200) account for 80% of the requests, therefore

the impact on non-popular objects should be acceptable.

The proposed solution for the search procedure works also

in case of adoption of our proposed publishing procedure: the

references to popular objects will be scattered around the target

and a random search scheme will be able to easily find them.

C. Discussion

In this section we comment on different aspects related

to the proposed scheme, including security considerations,

parameter settings and peer churn. We do not discuss the

introduction of new messages, which would simplify the load

balancing, since, as we stated before, we aim at proposing a

solution that does not modify the KAD protocol.

Accuracy of the candidate list: In our measurement cam-

paign, when we have derived the accuracy of the candidate

list, we have shown the results up to the tenth position. Our

proposed load balancing scheme considers the positions with a

lower rank. In case of our improved Lookup procedure (where

we have set the parameter β to 16) we have assumed that the

accuracy remains the same up to the 20th position, thanks to

the high number of peers in the candidate list. Preliminary

tests with a prototype implementation of our load balancing

scheme in a instrumented aMule client have shown that this

assumption is reasonable.

Improving accuracy: The proposed scheme (in both publish

and search procedures) relies on the fact that the candidate

list is accurate in the first few positions, and progressively

inaccurate in the other positions. This is specific to the

implementation of the Lookup procedure in KAD (both in the

basic implementation and with our modification). One may

ask what would happen in case of an improvement of the

Lookup procedure, such that it provides an extremely accurate

candidate list. The solution would be straightforward: it is

sufficient to reproduce the inaccuracy of the current Lookup

procedure. By adopting this approach, our proposed scheme



remains sufficiently general, yet maintaining its simplicity.

Keeping the history: For each published object, there is

an expiration time associated to it, after which the object

is republished. A publishing peer can maintain information

about the popularity of an object. It may be a simple flag that

indicates that in the previous publishing process the object

was popular, so that to drive the peer candidate choice. We

will evaluate this enhancement as a future work.

Parameter setting: The procedure Publish has a set of pa-

rameters, namely the thresholds used to discriminate between

popular and non-popular object. Changing such thresholds has

an impact of the effectiveness of the proposed solution: low

thresholds may spread too much the references, while high

thresholds may detect a popular object too late. Unfortunately

there is no a simple distributed solution to this problem: a

centralized solution – e.g., a server that keeps track of object

popularity – is impractical and subject to security issues; a

solution based on gossiping increases the overhead and may

not assure that the information is available when it is needed.

In both cases, the designer should introduce new messages,

changing the KAD protocol. The use of thresholds is the sim-

plest solution that does not require significant modifications to

KAD. In our case, we have used the measurements showed in

Sec. III to set the thresholds. As for the procedure Search,

there are two parameters: the number of random tentatives

and the maximum rank in the candidate list. As a future work

we plan to perform a measurement campaign to evaluate the

impact of such parameters in real environments. In Sec. V-B

we study them in a synthetic environment.

Security considerations: Here we consider attacks specifi-

cally related to our scheme. A malicious peer could return a

load of 100 even if the object is not popular, or a load of 0

even if the object is popular. If the peer is very close to the

object KAD ID, in both cases the effect would be minimal.

If the malicious peer is far from the object KAD ID (i.e., it

tries to be in the ninth or tenth position in the candidate list),

the inaccuracy of the candidate list would limit the impact of

such malicious behavior. In order to be effective, a malicious

peer should perform these types of attacks in conjunction to

a Sybil attack: therefore, any solution that prevents a Sybil

attack [13] is sufficient to weaken the attacks to our scheme.

As for the eclipse attack, since our scheme tends to scatter

in a wider zone the references of popular objects, we have as

by-product a countermeasure to such a malicious behavior.

Churn: Considering a specific target KAD ID, the peers

around such target change over time. The candidate list of a

publishing peer may contain newly arrived peers (they do not

contain stale contacts, since the Lookup procedure eliminates

them): during the publishing process, a newly arrived peer

has a low load, thus the publishing peer may consider the

object not popular. The impact of this aspect is minimal, since

eventually the candidate list should contain a peer with the

load above the threshold. In any case, publishing on newly

arrived peer is not a problem, since they have a low load.

V. NUMERICAL RESULTS

In order to assess the effectiveness of our solution, we take

a simulation approach: an evaluation based on real modified

peers, in fact, would be impractical for many reasons. For

instance, the generation of the publishing traffic for a popular

keyword requires a high peer arrival rate, each of them with

a different KAD ID and a differentiated candidate list building

process; such process needs different initial neighbor set, since

starting from the same set of neighbors may result in correlated

candidate lists, which in turn affects the publishing and the

searching process.

A. Simulator Description and Settings

For the evaluation of the load balancing scheme, we need

essentially two key ingredients: (i) the peer dynamics (arrival

and departure) should be realistic, and (ii) the candidate list

should have the same accuracy of the current KAD imple-

mentation. We should have full control on these two aspects

in a simulator: we have considered the few available KAD

simulators [12][19] and none of them provides such control.

For this reason we decided to implement a custom event driven

simulator [7].

The peer arrivals and departures follow the publicly avail-

able traces collected over six months from the KAD network

[1]: the simulator takes as input the availability matrix of all

the peers seen in a specific zone and generates the correspond-

ing arrival and departure events, reproducing the dynamics of

real peers measured over a six month period.

Given the set of peers that are online at a given instant,

and given a target KAD ID, we are able to build an accurate

list L. Starting from L, we build the candidate list L′ fol-

lowing the procedure explained in Sec. IV-C, with the help

of the measurements presented in Sec. III-C. For the basic

KAD scheme and our load balancing scheme, we have used

the results shown in Fig. 4 labeled as “basic scheme” and

“improved Lookup” respectively.

Besides the peer availability matrix, the inputs of the

simulator are (i) the target KAD ID, (ii) the starting publishing

instant, (iii) the observation time, and (iv) the publishing rate.

The target KAD ID can be set to check if there is a bias in

the KAD ID space – which we actually never observed, so

any KAD ID can be used. With the starting publishing instant,

we can set the point in time, within the six months period,

when the peers can start publishing the content. Once started,

we observe the evolution of the publishing process for a time

equal to the observation time. The publishing rate defines the

number of publishing attempts per second, and can be tuned

to reproduce the desired keyword popularity.

We tested different input parameters – target KAD ID,

the starting publishing instant, and the observation time –

obtaining similar results, therefore hereinafter we will not

explicitly state the values of such parameters.

Once published, an object has a validity of 24 hours, after

which it is removed from the host peer. The output of the tool

is represented by the peer load, with peers ordered according to



the XOR-distance to the target KAD ID. We have also recorded

the number of the wasted messages due to saturation.

For our load balancing scheme, we need to set the thresholds

used to identify popular keywords. Looking at the load mea-

surements, we see that the tenth replica is usually published

on peers with limited load (10%-20%). For this reason, we

set Dmin and Dmax to 15 and 60 respectively. We performed

tests with limited variations on such thresholds (±20% on

both Dmin and Dmax, results not shown for space constraints)

obtaining similar results.

Note that we consider a eight-bit zone with a single popular

object: thanks to the KAD hash function, it is very unlikely

that the KAD IDs of two popular objects are close enough to

influence each other [16].

B. Results

We first validate our simulator by reproducing the basic

KAD scheme, and taking snapshots of the system at different

times, for different popularity of the keywords. In particular,

we consider a publishing rate equal to 50, 5 and 0.5 publishing

requests per second for objects with high, medium and low

popularity respectively. Figure 5 shows the results for the three

cases. Thanks to the high number of peers, all the simulations

have always shown the same qualitative behavior. The high and

low popularity results match the corresponding ones obtained

with measurements (cf. Figs. 1 and 2).

 0

 25

 50

 75

 100

 0  10  20  30  40  50

XOR-distance (%)

high popularity
 0

 25

 50

 75

 100

L
o

ad
 (

%
) medium popularity

 0

 25

 50

 75

 100

 

low popularity

Fig. 5. Load distribution with the basic KAD scheme.

The simulator has also registered the rate of wasted mes-

sages: for the peers close to the target, this is equal to the

probability to be chosen times the publish rate (once the

peer is saturated). The output of the simulator confirmed this

computation: even if these results cannot be compared with

the real measurements (where we had a single, always online,

peer registering the messages), they can be used in comparison

to the wasted messages in case of load balancing.

We note that, if we sum the load of all the peers in the

snapshot (which corresponds visually to the area under the

“skyline” of the load distribution), we obtain the the total

number of references, all replicas included, currently stored

in the system.

With the same settings used in basic KAD scheme, we have

tested our load balancing scheme. Fig. 6 shows the results

for the same keyword popularities used in Fig. 5. In case of

objects with high and medium popularity, the load balancing

scheme is able to spread the references on a higher number

of peers w.r.t. the basic scheme. Moreover, the total number

of stored references is larger than the basic KAD scheme (the

area under the “skyline” is bigger than the corresponding ones

in Fig. 5): this is due to the fact that no publishing messages

have been discarded. Therefore, compared to the basic KAD

scheme, our load balancing mechanism is able to improve

the reliability and the diversity of the references, since no

publishing messages are lost due to overload of the host peers.

For objects with low popularity, the behavior of our mech-

anism remains similar to the basic KAD scheme: our load

balancing solution is able to adapt to the popularity conditions

and spread the load accordingly.

 0

 25

 50

 75

 100

 0  10  20  30  40  50

XOR-distance (%)

high popularity
 0

 25

 50

 75

 100

L
o

ad
 (

%
) medium popularity

 0

 25

 50

 75

 100

 

low popularity

Fig. 6. Load distribution with our load balancing scheme.

Figures 5 and 6 can be analyzed also under a different

perspective: consider an object whose popularity varies over

time, from low to high, due to a sudden increase of interest

in such object. The three different popularities may represent

a snapshot of the evolution of the system. In this case, we

can see our scheme is able to involve increasingly more host

nodes, balancing at the same time the load among them,

without losing any reference. Instead, the basic KAD scheme,

even if it actually uses more host peers, shows a strong

imbalance among them, which results in some lost references.

If the popularity variation goes from high to low, the fact

that references have an expiration time (after which they are

removed from the host peers) ensures that the load on host

peers far from the target will decrease.

The evaluation of the load balancing scheme needs to

consider the performance of the searching phase as well.



Every 30 minutes we simulate a search, i.e., we use the same

candidate list building process and we send a search request

following the basic KAD scheme (i.e., starting from the first

candidate) and our proposed scheme (cf. procedure Search

in Sec. IV-B). For each search, we record the number of peers

that has been queried in order to obtain at least 300 references.

Tab. II shows the average of such performance index (over

300 searches, with 95% confidence intervals not reported since

they are all smaller than 1% of the measured value), in case of

basic KAD publishing scheme and our load balancing scheme2.

TABLE II
AVERAGE NUMBER OF QUERIED PEERS DURING THE SEARCH PHASE.

High popularity Low popularity

basic improved basic improved

search search search search

basic KAD publ. 1.02 1.04 1.12 1.39

load balancing n.a. 1.07 n.a. 1.23

We note that our improved search scheme is able to provide

300 references with a small penalty in the number of queried

peers: in practice, in the worst case, 27% of the time the

searching peers need to query two candidates, which are

randomly chosen among the first ten. As the improved search

scheme is able to improve diversity, since it may retrieve

references that have not been published on the top ranked

peers (due to overload), such slight increase in the average

number of queried peers seems a reasonable price to pay.

VI. CONCLUSION

The popularity distribution of objects in a P2P network is

highly skewed. Therefore, load balancing is necessary to en-

sure a fair use of the available resources in the network. In this

work, we have proposed a solution that dynamically adjusts

the criteria used to select the number and the location of peers

responsible for storing objects, based on their popularity. We

have focused on a production system – namely Kademlia, as

implemented in the aMule / eMule clients – which introduces

a number of constraints to the design of an adaptive load

balancing scheme in order to maintain backward compatibility.

In particular, we have modified the algorithms used by the

clients, without modifying the protocol and the messages.

The design of the proposed solution has been driven by a

detailed measurement campaign whose aim was to highlight

how the current implementation of the system deals with

popular objects. Once identified the weaknesses and the avail-

able mechanisms that can be exploited in the current design

of KAD, we have designed and evaluated a load balancing

mechanism that copes with heterogeneous object popularity

and reference diversity. Our results, based on a trace-driven

simulation approach, showed that our scheme avoids the loss

of object references due to saturation, thus increasing the

reliability and the diversity of the resources. Furthermore, we

also evaluated an enhanced searching procedure, based on

2If peers publish with the load balancing scheme, they will perform the
improved search, therefore the basic search is not shown in this case.

randomization, to exploit such increased diversity: our results

indicated that the price to pay for a more efficient use of peer

resources in the network (which implicitly include the content

delivery phase) is arguably small.

There are a number of possible research directions that can

be followed as future work. The fact that KAD is used by

millions of users, makes available a set of data that can be

used to redesign part of the system. For instance, the Lookup

procedure can be re-implemented considering the approach

taken by the crawler used for our experiments, so that to

increase the accuracy of the candidate list. Another example is

the introduction of a new set of messages that allow querying

peers’ load, without the necessity to force a publish procedure.

ACKNOWLEDGMENTS

The authors would like to thank Ernst Biersack for the

valuable discussions in the early stage of this work. This

research has been partially supported by the French ANR-

VERSO projects PROSE and VIPEER.

REFERENCES

[1] http://www.eurecom.fr/∼btroup/kadtraces/.
[2] M. Bienkowski, M. Korzeniowski, and F. Meyer auf der Heide. Dynamic

load balancing in distributed hash tables. In Proc. of IPTPS, 2005.
[3] J. Byers, J. Considine, and M. Mitzenmacher. Simple load balancing

for distributed hash tables. In Proc. of IPTPS, 2003.
[4] D. Carra and E. W. Biersack. Building a reliable P2P system out of

unreliable P2P clients: The case of KAD. In Proc. of CoNEXT, 2007.
[5] B. Godfrey, K. Lakshminarayanan, S. Surana, R. Karp, and I. Stoica.

Load balancing in dynamic structured p2p systems. In Proc. of IEEE

INFOCOM, 2004.
[6] B. Godfrey and I. Stoica. Heterogeneity and load balance in distributed

hash tables. In Proc. of IEEE INFOCOM, 2005.
[7] KAD Load Balancing Simulator. http://profs.sci.univr.it/∼carra/

downloads/kadsim.tgz.
[8] H.-J. Kang, E. Chan-Tin, Y. Kim, and N. Hopper. Why Kad lookup

fails. In Proc. of IEEE P2P, 2009.
[9] P. Maymounkov and D. Mazières. Kademlia: A Peer-to-peer informati-

ion system based on the XOR metric. In Proc. of IPTPS, 2002.
[10] S. Petrovic, P. Brown, and J.-L. Costeux. Unfairness in the e-mule file

sharing system. In Proc. of ITC, 2007.
[11] A. Rao, K. Lakshminarayanan, S. Surana, R. Karp, and I. Stoica. Load

balancing in strucured p2p systems. In Proc. of IPTPS, 2003.
[12] L. Sheng, J. Song, X. Dong, and L. Zhou. Emule simulator: A practical

way to study the emule system. In Proc. of ICN, 2010.
[13] M. Steiner, E. W. Biersack, and T. En-Najjary. Exploiting kad: Possible

uses and misuses. Computer Communication Review, 37(5), 2007.
[14] M. Steiner, D. Carra, and E. W. Biersack. Faster content access in KAD.

In Proc. of IEEE P2P, 2008.
[15] M. Steiner, D. Carra, and E. W. Biersack. Evaluating and improving

the content access in KAD. Journal of Peer-to-Peer Networks and

Applications, 3(2):115–128, June 2010.
[16] M. Steiner, W. Effelsberg, T. En-Najjary, and E. W. Biersack. Load

reduction in the KAD peer-to-peer system. In Proc. of DBISP2P, 2007.
[17] M. Steiner, T. En-Najjary, and E. W. Biersack. Long term study of peer

behavior in the KAD DHT. IEEE/ACM Transactions on Networking,
17(5):1371–1384, October 2009.

[18] K. Wang T.-T. Wu. An efficient load balancing scheme for resilient
search in kad peer to peer networks. In Proc. of IEEE MICC, 2009.

[19] P. Wang, J. Tyra, E. Chan-Tin, T. Malchow, D.F. Kune, N. Hopper, and
Y. Kim. Attacking the kad network: real world evaluation and high
fidelity simulation using dvn. Security and Comm. Networks, 2010.

[20] D. Wu, Y. Tian, and N. Kam-wing. Resilient and efficient load
balancing in distributed hash tables. Journal of Network and Computer
Applications, 32(1):45–60, 2009.

[21] Z. Xu and L. Bhuyan. Effective load balancing in p2p systems. In Proc.

of IEEE CCGRID, 2006.


