
Are 3rd Parties Slowing Down the Mobile Web?

Utkarsh Goel
Montana State University

utkarsh.goel@montana.edu

Moritz Steiner
Akamai Technologies, Inc.
moritz@akamai.com

Wontaek Na
Akamai Technologies, Inc.

wna@akamai.com
Mike P. Wittie

Montana State University
mwittie@cs.montana.edu

Martin Flack
Akamai Technologies, Inc.
mflack@akamai.com

Stephen Ludin
Akamai Technologies, Inc.
sludin@akamai.com

1. INTRODUCTION
Content Providers (CPs) such as Facebook, Google, and others

desire that their websites attract large user bases and generate high
revenue. As a result, CPs strive to develop attractive and interactive
websites that keep users engaged. JavaScript libraries from Online
Social Networks, advertisements, and user tracking beacons allow
CPs to personalize webpages based on end-users’ interests, while
various CSS frameworks make websites aesthetically pleasing [7,
9]. Further, webpage analytic APIs and performance monitoring
tools allow CPs to monitor the user-perceived performance with
their websites [8, 11]. However, as CPs continue to evolve their
websites with more and more attractive features the webpage load
time (PLT) starts to increase, which results in poor user experience
with their websites [5, 12, 27].

To speed up Web content delivery to end-users CPs make con-
tracts with Content Delivery Networks (CDNs), such as Akamai.
These CDNs are distributed deep inside many last mile wired
and mobile ISPs worldwide and thus provide low-latency paths to
end-users [24]. Additionally, CDNs are motivated to adopt new
and upcoming Internet standards to achieve even faster content
delivery for CPs’ websites [15, 17, 19, 21]. Although CDNs are
effective in reducing download times of Web objects they serve, as
CPs continue to enhance their websites by adding external APIs
and tools it becomes challenging for CDNs to further speed up
webpages [5, 12, 27].

We refer to external APIs and tools as 3rd Party assets because
the performance of such assets is not under the control of the
1st Party (such as a CDN provider acting as surrogate infrastructure
for its CP customers) that serves the base page HTML. In general,
we define 3rd Party as any asset embedded in the webpage that is
not served by the same infrastructure serving the base page HTML
and thus the downloads of such assets cannot be optimized by
1st Party.

In this paper, we take a novel approach to expose the impact of
3rd Party downloads on mobile Web performance. We showcase
results from our ongoing investigation to understand whether
3rd Party downloads contribute to critical paths of webpages [26].
Specifically, we make the following three contributions:

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

S3’16, October 03-07, 2016, New York City, NY, USA
c© 2016 ACM. ISBN 978-1-4503-4255-1/16/10. . . $15.00

DOI: http://dx.doi.org/10.1145/2987354.2987359

Data Analysis: We make extensive use of the open-sourced
data available at HTTP Archive to expose the characteristics of
3rd Party assets embedded into the top 16,000 Alexa webpages,
which we observe to be currently served by four major CDN
providers [2, 6]. Specifically, we investigate the number of unique
domain names resolved, HTTP requests sent, total bytes, and
total uncompressed bytes downloaded for 3rd Party assets for each
webpage in our dataset.

Measurement: To understand the impact of 3rd Party downloads
on PLT, we conduct several active experiments over a period of
three months in 2016 using 52 cellular clients of Gomez Mobile
testbed [3]. We load 60 real webpages about 400 times each from
the production servers of a major CDN provider, where each web-
page comprises of several 3rd Party assets. For the purposes of this
investigation, we devise a new Web performance metric, 3rd Party
Trailing Ratio, that represents the time spent in downloading
3rd Party assets, when no 1st Party asset is downloaded in parallel.

Inferences Drawn: Based on our preliminary analysis of 3rd Party
download times, we observe that for many webpages 3rd Party
downloads contribute to up to 50% of the page load time, in
the median case. Additionally, we identify that several 3rd Party
vendors do not compress Web objects even when clients show
support for compression in HTTP headers.

To the best of our knowledge, there is currently no known
best-practice as to how 1st Parties should optimize 3rd Party
downloads to mitigate the impact of 3rd Party downloads on the
overall PLT. Therefore, in this paper we motivate the need to
explore research directions for 1st Parties to enable them reduce
PLT currently inflated by various 3rd Party downloads.

2. DATA COLLECTION
We now discuss our datasets to investigate the characteristics of

3rd Party assets embedded in different webpages. We then measure
the impact that 3rd Party assets make on PLT, by conducting active
experiments in real-world cellular networks.

Understanding webpage structures: We use the open-sourced
HTTP Archive dataset, an initiative by Google, Mozilla, and other
industry leaders, to understand structures of different websites [2].
The HTTP Archive data is collected using the WebPageTest frame-
work, where webpages are loaded over several virtual machines
inside a datacenter [13]. The page loads are then translated into
a format similar to HTTP Archive format (HAR) containing the
timing data as well as HTTP request and response headers for each
individual HTTP request issued for the webpage under test.

For the purposes of this work, we extract only the HTTP request
and response headers pertaining to the top 16,000 Alexa webpages,

1 2 5 10 20 50 100 200 500

0.
0
0.
2
0.
4
0.
6
0.
8
1.
0

Number of 3rd Party Requests

Fr
ac

tio
n

of
 W

eb
pa

ge
s

DNS
HTTP

Figure 1: Distribution of the number of DNS lookup and
HTTP requests made to download 3rd Party assets.

1 10 100 1000 10000

0.
0
0.
2
0.
4
0.
6
0.
8
1.
0

Amount of 3rd Party Data (KB)

Fr
ac

tio
n

of
 W

eb
pa

ge
s

Uncompressed
Total

Figure 2: Distribution of total bytes and uncompressed bytes
downloaded from 3rd Party vendors.

which we observe are currently served to Android mobile devices
by four major CDN providers. In particular, for each requested
object we extract headers indicating the response size, hostname
associated with the download, and whether the response was com-
pressed by the 3rd Party server. Since many 3rd Party assets often
load after the onLoad event triggered by the Web browser and since
we only focus on understanding how much 3rd Party downloads
impact the PLT, we consider the measurement data for objects
loaded only until the onLoad event. Our total dataset consists of
about 16,000 webpages requesting a total of 1.6 M objects, out of
which about 525 K objects belong to 3rd Party vendors.

Next, for each hostname we perform a dig operation to check
whether the hostname resolves to a canonical name (CNAME)
associated with any of the four CDN providers used in this study. If
a hostname for an object does not resolve to a CNAME associated
to the 1st Party serving the base page HTML, we consider that
object as a 3rd Party asset, with respect to the 1st Party under
analysis. Additionally, if the hostname does not resolve to any
CNAME, we consider that hostname as 3rd Party for all four
1st Party CDN providers we consider in this study.

Finally, for each webpage we calculate the total number of do-
main names resolved and HTTP requests sent for objects that we la-
bel as 3rd Party assets. We also calculate the total number of bytes,
as well as the total number of uncompressed bytes delivered by var-
ious 3rd Party vendors even when mobile clients indicate support
for compression in HTTP requests.

Measurement data for 3rd Party impact: To collect Web perfor-
mance data pertaining to mobile page loads, we conduct several
active experiments on Gomez Mobile testbed to download 60
different webpages served by the production servers of a major
CDN provider [1, 3]. Next, we configure Gomez Mobile clients
to load each website about 400 times and record Navigation and
Resource Timing data for each page load [4, 10]. The Navigation
and Resource Timing data we obtain consists of timestamps when
the page load starts, timestamps when each object starts and
finishes loading (including the time to perform DNS lookup, TCP
handshake time, SSL handshake time, time to receive the first bit,
and the object download time), and the timestamp when onLoad
event is triggered by the Web browser. Our configured Gomez
clients also record the hostname associated to each requested
object, which we use to identify whether or not the object is
downloaded from a 3rd Party vendor, similarly to how we identify
this using the HTTP Archive data.

3. RESULTS
In Figure 1, we show the distribution of the number of unique

domain names resolved and total number of HTTP requests issued
to download 3rd Party assets for webpages served by the four major
CDN providers used in this study. In general, we observe that

FP Start Time FP End Time FP Start Time FP End Time

TP Start Time TP End Time

Figure 3: An example waterfall diagram showing one 3rd Party and
two 1st Party downloads during page load.

in the median case, webpages resolve about 10 unique 3rd Party
domain names and issue about 50 HTTP requests to download
3rd Party assets. For mobile clients where radio latency and the
latency to cellular DNS servers is a few hundred milliseconds,
we speculate that resolving multiple 3rd Party domain names
could introduce significant latency to the overall PLT [20, 19, 25].
Additionally, such a large number of domain name lookups could
potentially result in establishing many new TCP connections,
negatively affecting the object downloads as each connection to
3rd Party server has to go through a TCP slow start phase.

Additionally, in Figure 2, we show the distribution of the total
amount of data downloaded from 3rd Party servers, as well the total
number of uncompressed bytes transmitted by 3rd Party servers
even when clients indicate support for compression in the HTTP
requests. Finally, similarly to Agababov et al., we observe that sev-
eral 3rd Party vendors do not compress objects even when clients
indicate support for compression in HTTP request headers [14].

Although 3rd Party assets embedded on a webpage may require
multiple domain name lookups and download of hundreds of
kilobytes of data, we argue that 3rd Party assets that do not lie on a
webpage’s critical path will not impact the PLT. Therefore, we now
focus on quantifying the time spent by 3rd Party downloads on the
critical path of the webpage. Specifically, we devise a new Web
performance metric, 3rd Party Trailing Ratio (TPTR), to reflect
time spent by 3rd Party downloads during which no 1st Party asset
is being downloaded. For example, consider the example waterfall
chart in Figure 3, where we show the start and end timestamps of
one 3rd Party and two 1st Party object downloads during a webpage
load [22]. We define TPTR as the total time spent by 3rd Party
downloads during which no 1st Party download is overcasting the
3rd Party download in the waterfall chart, as denoted by the two
thick solid blue lines.

To calculate TPTR, we employ a two step process as follows:
First, using start and end timestamps of all object downloads,
we calculate all non-overlapping time intervals of 1st Party and
3rd Party downloads [18]. Second, using above intervals, for each
3rd Party interval we identify whether there is any 1st Party interval
that intersects the 3rd Party interval. We then calculate the 3rd Party
time interval that does not overlap with any 1st Party interval. The
sum of all such intervals results to the TPTR.

In Figure 4, we show the distribution of TPTR for 60 webpages
served by a major CDN provider, each loaded 400 times from
Gomez Mobile clients connected to cellular networks. For figure

0
20

40
60

80
10
0

10 20 30 40 50 60
Distinct Webpages

3r
d

P
ar

ty
 T

ra
ili

ng
 R

at
io

 (%
)

Figure 4: Distributions of 3rd Party Trailing Ratio across 60
webpages served to cellular clients.

clarity, we sort pages on x-axis based on the median TPTR value
across different webpages. In general, we observe that 3rd Party
downloads do not impact PLT for about half of the webpages
in our dataset. With these webpages, when 3rd Party assets are
being downloaded, one or more longer 1st Party assets are also
being downloaded in parallel. Therefore, for these webpages, the
3rd Party downloads do not lie on critical path. However, for other
webpages, 3rd Party downloads contribute to up to 50% of the total
PLT, in the median case. For these webpages, when 3rd Party assets
are being downloaded one or more 1st Party downloads overlap at
most a small fraction of 3rd Party download time. Therefore, for
these webpages, 3rd Party downloads lie on the webpage critical
path and thus introduce additional latency to the overall PLT.

4. FUTURE RESEARCH DIRECTIONS
Our study exposes the impact of 3rd Party object downloads on

mobile Web performance. We argue that the research community
should invest effort to develop techniques that mitigate such
demonstrated 3rd Party impact. In our ongoing work, we plan
to investigate if and how 1st Party could safely redirect 3rd Party
downloads onto their infrastructures. One option to achieve this
would be to rewrite 3rd Party URLs to URLs associated to 1st Party
hostnames, such that any request to download a 3rd Party asset
could be delivered by 1st Party servers, to which the clients are
already connected.

Additionally, such URL rewriting would allow 1st Party to use
well-thought content delivery protocols, such as HTTP/2, IPv6,
caching and pre-fetching static resources to deliver 3rd Party assets.
Alternatively, one could potentially coalesce TCP connections
to 3rd Party content serves onto the existing connection to the
1st Party server [23]. In fact, a recent Internet draft by Microsoft
and Mozilla details how to present additional certificates during an
existing connection and serve content for the domains referenced
in the additional certificates [16].

ACKNOWLEDGMENTS
We thank Eric Geyer (Akamai), Ilya Grigorik (Google), Shan-
tharaju Jayanna (Yahoo!), Andrew Kahn (Akamai), Patrick
Meenan (Google), Ajay Kumar Miyyapuram (Cerner), and Kanika
Shah (AppDynamics) for providing us constructive feedback. We
also thank National Science Foundation (NSF) for supporting this
work through grants NSF CNS-1555591 and NSF CNS-1527097.

5. REFERENCES
[1] Gomez. http://www.sqaforums.com/attachments/601980-

SQA_Gomez_DollarThrifty_Webinar_QandA.PDF, Nov. 2009.

[2] HTTP Archive: Interesting stats.
http://httparchive.org/interesting.php, 2010.

[3] Gomez (Dynatrace Synthetic Monitoring).
https://www.ndm.net/apm/Compuware/gomez, Jul. 2015.

[4] Navigation Timing. http://w3c.github.io/navigation-timing/, Aug.
2015.

[5] The Truth Behind the Effect of Third Party Tags on Web
Performance. http://blog.catchpoint.com/2015/03/12/truth-behind-
effect-third-party-tags-web-performance/, Dec. 2015.

[6] Alexa Top Sites. http://www.alexa.com/topsites, Jul. 2016.
[7] Facebook for Developers. https://developers.facebook.com/, Jun.

2016.
[8] Google Analytics Soulutions. https://analytics.googleblog.com/, Jun.

2016.
[9] Google Fonts. https://fonts.google.com/, Jun. 2016.

[10] Resource Timing. https://www.w3.org/TR/resource-timing/, Jul.
2016.

[11] The next generation of Application Intelligence has arrived.
https://www.appdynamics.com/, Jun. 2016.

[12] Third-party content could be slowing Britain’s retail websites.
https://www.nccgroup.trust/uk/about-us/newsroom-and-
events/press-releases/2016/march/third-party-content-could-be-
slowing-britains-retail-websites/, Mar. 2016.

[13] WebPageTest Framework. http://www.webpagetest.org/, Jul. 2016.
[14] V. Agababov, M. Buettner, V. Chudnovsky, M. Cogan, B. Greenstein,

S. McDaniel, M. Piatek, C. Scott, M. Welsh, and B. Yin. Flywheel:
Google’s Data Compression Proxy for the Mobile Web. In USENIX
NSDI, May 2015.

[15] M. Belshe, R. Peon, and E. M. Thomson. Hypertext Transfer
Protocol Version 2 (HTTP/2), RFC 7540, May 2015.

[16] M. Bishop and M. Thomson. Secondary Certificate Authentication in
HTTP/2. http://www.ietf.org/internet-drafts/draft-bishop-httpbis-
http2-additional-certs-01.txt, May 2016.

[17] F. Chen, R. K. Sitaraman, and M. Torres. End-User Mapping: Next
Generation Request Routing for Content Delivery. In ACM
SIGCOMM, Aug. 2015.

[18] R. C. Enaganti. Merge Overlapping Intervals.
http://www.geeksforgeeks.org/merging-intervals/, Aug. 2015.

[19] U. Goel, M. Steiner, M. P. Wittie, M. Flack, and S. Ludin. A Case for
Faster Mobile Web in Cellular IPv6 Networks. In ACM MobiCom
(Poster Session), Oct. 2016.

[20] U. Goel, M. Steiner, M. P. Wittie, M. Flack, and S. Ludin. Detecting
Cellular Middle-boxes using Passive Measurement Techniques. In
ACM Passive and Active Measurements Conference (PAM), 2016.

[21] U. Goel, M. Steiner, M. P. Wittie, M. Flack, and S. Ludin. HTTP/2
Performance in Cellular Networks. In ACM MobiCom, Oct. 2016.

[22] M. Isham. X-Ray Your Website Performance: A BeginnerâĂŹs
Guide to Waterfall Charts. https://zoompf.com/blog/2013/10/x-ray-
your-website-performance-a-beginners-guide-to-waterfall-charts,
Oct. 2013.

[23] S. Makineni, R. Iyer, P. Sarangam, D. Newell, L. Zhao, R. Illikkal,
and J. Moses. Receive Side Coalescing for Accelerating TCP/IP
Processing. In High Performance Computing (HiPC), Dec. 2006.

[24] E. Nygren, R. K. Sitaraman, and J. Sun. The Akamai Network: A
Platform for High-Performance Internet Applications. In ACM
SIGOPS Operating Systems Review, Vol. 44, No.3, July 2010.

[25] J. P. Rula and F. E. Bustamante. Behind the Curtain: Cellular DNS
and Content Replica Selection. In ACM Internet Measurement
Conference (IMC), Nov. 2014.

[26] X. S. Wang, A. Balasubramanian, A. Krishnamurthy, and
D. Wetherall. Demystify Page Load Performance with WProf. In
USENIX NSDI, Apr. 2013.

[27] C. Williams. How one developer just broke Node, Babel and
thousands of projects in 11 lines of JavaScript.
http://www.theregister.co.uk/2016/03/23/npm_left_pad_chaos/, Mar.

2016.

