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Abstract— We present a distributed algorithm for the cluster-
ing of peers in a Networked Virtual Environment (NVE) that
are organized using a peer-to-peer (P2P) network based on the
Delaunay triangulation. The algorithm is dynamic in the sense
that whenever a peer joins or leaves the NVE, the clustering
will be adapted if necessary by either splitting a cluster or
merging clusters. The main idea of the algorithm is to classify
links between adjacent peers into short intra-cluster and long
inter-cluster links.

The advantages of clustering are multiple: clustering allows to
limit queries to the peers of a cluster avoiding to flood the entire
network. Since clusters can be seen as a level of abstraction that
reduces the amount of information/detail exposed about the NVE,
clustering allows for faster navigation in the NVE and reduces
the number of messages a node receives when he travels through
the NVE.

Index Terms— clustering, Delaunay triangulation, NVE, P2P,
social networks.

I. INTRODUCTION

Networked Virtual Environments (NVEs) are computer gen-
erated synthetic worlds that allow simultaneous interactions
between multiple participants. Especially with the boom of
Massive Multiplayer Online Games (MMOGs), NVEs are
becoming more and more popular nowadays. However, to
create a large scale NVE, the traditional client-server model
does not scale.

Recently peer-to-peer (P2P) architectures [1], [2], [3] have
been proposed to solve the scalability issue. Yet, a P2P
approach to build a large scale virtual environment raises a
number of issues. In shared virtual reality applications, peers
are characterized by a position in a virtual space. Unlike to
DHT, this position can be chosen and changed freely by the
peers. Typically, in P2P-based NVEs each peer only knows its
direct neighbors and some other peers in its attention radius.
The only way to handle a query in such a scenario is to forward
it to all neighbors, that is to flood the entire virtual world as
long as no answer to the query is found. Flooding requires a
lot of bandwidth and is not very scalable.

Our approach to achieve scalability is based on the proper-
ties of a social network of people who are using the system. A
social network is a set of people with some interactions among
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them [4], [5]. In recent years, social networks have been
studied with respect to properties such as degree distribution,
the small world effect, the search ability, and clustering. If
people interact in the virtual world as described by the social
networks for the real world, they will tend to form clusters. In
this case, one identifies these clusters and limit the scope of
queries to the respective cluster, avoiding to flood the entire
network.

The second motivation for clustering peers is to abstract
a cluster of peers into a single object and to allow faster
navigation in the virtual world: not from peer to peer but from
cluster to cluster. In this case, another network on top of the
overlay of the nodes is needed: A cluster overlay network.

Another benefit using clusters is to avoid that a peer p that
travels through the NVE must receive a HELLO message from
every peer that gets within its proximity, which consumes a lot
of bandwidth and significantly slows down the traveling peer
p. Instead, it would be desirable that only one peer among
all the peers of a clusters sends information about the cluster
to a traveling peer p. Only if p comes so close to the cluster
that it could be a part of it, p gets information about the inner
structure of the cluster.

This paper proposes a distributed and dynamic algorithm
for the clustering of peers (DDC) in a NVE based on a fully
distributed P2P network. DDC is not only applicable to NVEs,
but to all proximity graphs with a clustered distribution of the
nodes where each node only knows its immediate neighbors.
Some possible fields of application for DDC are:

• Network positioning systems relying on coordinates [6],
[7], [8], [9], [10]. In such systems each host has assigned
a position in a d-dimensional space. The network distance
between two hosts is estimated by computing the distance
using their coordinates.

• Latency-driven content delivery networks [11]. DDC can
not only ease the detection of a group of nearby hosts, but
also the accurate selection of the location for the replicas.

• End system multicast such as Narada [12], which is tar-
geted towards medium sized groups. By clustering peers
and establishing multicast communication first between
clusters, and then within each cluster, Narada can scale
to much bigger groups.

The DDC algorithm presented relies on DTON [13], a
fully distributed P2P overlay network based on 3-dimensional
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Delaunay triangulation (DT) [14], [15]: The peers are seen as
points in the DT and the links between them as the edges of
the DT.

Given n 3-dimensional points, the 3d Delaunay triangulation
connects the points into non–overlapping tetrahedra that fill
the convex hull of these points in such a way that the sphere
criterion is satisfied, i.e. the circumsphere of the four vertices
of any tetrahedron of the DT contains none of the given n
points in its interior. The dual of the Delaunay triangulation
is the Voronoi Diagram [16], [15], which assigns to each of
the n points a region that is nearer to that point than to any
other point. The resulting region will form a pattern of packed
convex polyhedra covering the whole convex hull of the n
points. If all point pairs whose region share a common plan
are joined by straight lines, the result is a triangulation of the
convex hull of the n points. This triangulation is known as
Delaunay triangulation (Figure 1).

Fig. 1. Delaunay Triangulation and Voronoi diagram (dashed lines) in two-
dimensional space.

Given the peers are organized in an overlay that is built
according to the rules of the DT, some clustering approaches
have previously been presented [17], [18], [19]. The basic idea
is to classify the links that connect the peers in short intra–
cluster links and long inter–cluster links. However, up to now
no dynamic distributed clustering algorithm exists that allows
the insertion and the deletion of peers without having to restart
the complete cluster computation. The insertion of new peers
or the deletion of existing peers can result in the merging of
two clusters or the split of one cluster in two parts.

The rest of the paper is organized as follows: Section
2 contains definitions necessary for the description of our
algorithm, called DDC. In Section 3 we describe related work
in clustering, in Section 4 we describe DDC. In Section 5 we
evaluate the algorithm and present some simulation results.
Finally, Section 6 concludes the paper.

II. DEFINITIONS

Suppose P = p1, . . . , pn is a point set in 3 dimensions.
pni is the i.th component of point pn. The convex hull
of 4 affinely independent points from P forms a Delaunay
simplex (a tetrahedron) if the circumscribed sphere of the
simplex contains no point from P in its interior. The union
of all Delaunay simplices (tetrahedra) forms the Delaunay

triangulation DT (P ). If the set P is not degenerate – if no
five points of P are co-spherical – then DT (P ) is unique.

Every point p ∈ P represents the position of a peer in the
NVE. The peers have to have the ability to freely choose and
change their coordinates in the virtual world.

Two peers pi ∈ P and pj ∈ P are linked if they are part of
at least one common Delaunay tetrahedron. Let d(pi, pj) be
the Euclidean distance between them:

d(pi, pj) =

√√√√ 3∑
d=1

(pid − pjd)2.

Two linked peers are called Delaunay neighbors. Connections
are therefore based on the spatial relationship among the nodes
in the NVE.

The set of points P is partitioned into m subsets
CL1, . . . , CLm, called clusters.

m⋃
i=1

CLi = P

CLi ∩ CLj = ∅, 0 < i, j ≤ n, i 6= j

Each peer p maintains two lists: a list D(p) of its Delaunay
neighbors and a second list C(p) of its cluster neighbors.
Additionally, peer p stores the identifier cid(p) of the cluster it
belongs to. Note that C(p) ⊆ D(p) and that C(p) ⊆ CLcid(p).
C(p) = D(p) if peer p is a inner–cluster peer, that means all
neighbors of peer p are in the same cluster than peer p itself,
which implies that all links incident to peer p are intra–cluster
links.

For a peer p, let Mean(p) be the mean length of con-
nections from p to its neighbors pi ∈ D(p) in the Delaunay
triangulation. That is

Mean(p) =
∑‖D(p)‖

i=1 d(p, pi)
‖D(p)‖

.

For a peer p, let Dev(p) be the standard deviation of the
length of these links. That is

Dev(p) =

√∑‖D(p)‖
i=1 (d(p, pi)−Mean(p))2

‖D(p)‖ − 1
.

III. RELATED WORK

Cluster analysis has been a research topic for decades.
However, most of the algorithms only deal with static data
and are centralized. For our problem, we need a distributed
clustering algorithm that can handle join and leave of peers.
Also, each peer p that executes the algorithm only knows its
direct neighbors D(p) and not all n peers in the system.

DTON [13] implements the Delaunay Triangulation in 3d.
Our clustering algorithm DDC needs the graph constructed by
DTON to cluster the peers.



3

A. Threshold Based

Kang and others [18] presented a clustering algorithm
relying on the DT . The main idea is to remove Delaunay
edges whose length is greater than a threshold t, and in a
second step to remove clusters whose number of objects is
less than a given number cn. This centralized algorithm could
be adopted to a distributed one, but the main disadvantage
remains: the thresholds t and cn are global values, if there exist
high–density and low–density clusters, they are not recognized
properly.

B. Density Deviation Based

Estivill–Castro et al. [17] first suggested a density based
criterion for nodes organized via a DT , referred to as long–
short criterion. The link pipj that connects two points pi, pj

0 < i, j ≤ n, i 6= j that are neighbors in the DT is a ”short”
intra–cluster link – connecting points inside a cluster – if

d(pi, pj) < Mean(pi)− w ·Dev(pi) (1)

else it is a ”long” inter–cluster link – connecting points in
different clusters.

The idea behind this criterion is to combine spatial prox-
imity and spatial density. In a Delaunay triangulation, a point
p on the border of a cluster has a much larger value Dev(p)
since an inner cluster point, since p has both, short distances to
neighbors in the same cluster and long distances to neighbors
that are not in the same cluster.

IV. DYNAMIC DISTRIBUTED CLUSTERING

In this section we describe our dynamic and distributed
clustering algorithm (DDC). Figure 2 shows the result of DDC
for a set of 1000 peers.

Fig. 2. An example of 1000 peers clustered with DDC.

A. Distribution

The long–short criterion (1) must be adapted to avoid
errors in the cluster determination. In the version presented
in [17], two Delaunay neighbors pi and pj may classify their
connecting link pipj differently. Peer pi may come to the result

that it is an intra–cluster link, while peer pj may classify the
same link pjpi as inter–cluster link.

DDC uses a weighted average of the local criteria of both
peers: The link from pi to pj is a intra–cluster link if

d(pi, pj) <
Mean(pi) − w · Dev(pi) + Mean(pj) − w · Dev(pj)

2
(2)

else it is a inter–cluster link.

B. Dynamic

The main difference of DDC compared to [17] is that in our
field of application there is no global view and that the nodes
are inserted and removed dynamically, which may result in
splitting or merging of existing clusters.

In the following, we describe how the insertion of a new
peer will lead DDC to adapt the clustering.

Algorithm 1: Insertion (executed by peer p)

c ← closest(D(p))1

if intra-cluster (c,p) then2

C(p)← (C(c) ∩D(p)) ∪ c3

cid(p)← cid(c)4

foreach pi ∈ C(p) do5

send message to pi, to make it do:6

C(pi)← C(pi) ∪ p7

p.redetermination ()8

else9

cid(p) ← new unique cluster id10

The first and second peer in the NVE each form a cluster
of their own. Every newly arriving peer p checks if it is near
enough to its closest Delaunay neighbor c (line 1) to join its
cluster according to the used long–short criterion (line 2).

Due to the join of peer p, the density near p and therefore
near every peer pi ∈ D(p), expressed by Mean(pi) and
Dev(pi), changes. First, peer p updates its cluster neigh-
bor list C(p) by adding all those peers pi ∈ D(p) with
cid(pi) = cid(n) (line 3) and notifies them so they can
update their respective cluster neighbor list (line 5-7). Second
it redetermines the cluster repartition of its neighbors (line 8).

We now focus on the redetermination procedure (Alg. 2)
which is executed by the newly inserted peer p.

Algorithm 2: Redetermination (executed by peer p)

cid ← new unique cluster id1

foreach n ∈ D(p) do2

if n ∈ C(p) and not intra-cluster(n,p) then3

C(p)← C(p) \ n4

n. split(cid)5

if n /∈ C(p) and intra-cluster(n,p) then6

C(p)← C(p) ∪ n7

n. merge(cid(n),cid(p))8
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1) Split: Peer n and peer p are too far away to be connected
via an intra–cluster link (Algorithm 2, line 3). This means that
peer p was inserted that so close to peer c that peer n is not
any more near enough to c to be in the same cluster as peer
c. In this case, it seems that the cluster containing the peers
c, n and p must be split (Figure 3).

We now consider peer n ∈ C(n) on the reception of the
split message from peer p (Alg. 3). If this is the first time

Algorithm 3: Split(cid) (received by peer n)

if cid(n) 6= cid then1

cid(n)← cid2

foreach ni ∈ C(n) do3

if intra-cluster (ni,n) then4

ni. split (cid)5

else6

C(n)← C(n) \ ni7

n
c

b

d

p

Fig. 3. Split of the cluster cn due to the arrival of peer p. The solid lines
show the links and the clusters before the split, the dashed lines after wards.

peer n gets this split message (line 1), it updates its cluster
identifier to the unique cid generated by peer p (line 2) and
checks if a peer ni ∈ C(n) passes the long-short criterion
(line 4). The peers that pass, will all execute split and change
their cluster identifier to cid(n). The peers that fail the test
are removed from C(n) (line 7) and keep their old cluster
identifier cid(c). This is mainly the case for the peer that
executed the redetermination procedure (Alg. 2) and sent the
first split message.

It might happen that peer c and peer n are too far away
to be connected by an intra–cluster link but nevertheless
are part of the same cluster because there exists a path
of intra–cluster links connecting them. In this case the
recursive split message finds its way back to peer n and
all peers of the cluster get the new cluster number cid(n).
The cluster keeps its form and is not split but simply renamed.

2) Merge: Peer n and peer p are close enough to be
connected via an intra–cluster link, but they are not part of
the same cluster yet (Algorithm 2, line 6). That means peer
p was inserted in between two existing clusters CLcid(n) and
CLcid(c) and interconnects them (Figure 4).

We now consider peer n ∈ C(p) on the reception of the
merge message from peer p (Algorithm 4). If this is the first
time peer n gets this merge message (line 1), it changes its
cluster identifier cid(n) to cid(c) (line 2) and tells every peer
ni ∈ C(n) to propagate the new cluster identifier cid(n) =
cid(c) to their respective cluster neighbors C(ni) (line 4+5).
The sender of the merge message, peer ni, is added to C(n)
(line 8). This results in a merge of cluster cid(n) and cid(c)
to cluster cid(c), all peers of the cluster cid(n) change their
cluster identifier to cid(c).

b c

nd

p

Fig. 4. Merge of the cluster CLcid(c) and CLcid(n) due to the arrival of
peer p. The solid lines show the links and the clusters before the split, the
dashed lines after wards.

Algorithm 4: Merge(oldcid,newcid) (received by peer n)

if cid(n) = oldcid then1

cid(n)← newcid2

foreach ni ∈ D(n) do3

if ni ∈ C(n) then4

ni. merge (oldcid,newcid)5

else6

if intra-cluster (n,ni) then7

C(n)← C(n) ∪ ni8

The cluster redetermination in case of a peer departure
works similar to the case of a peer joining: Either the cluster of
the closest peer – who handles the departure in the Delaunay
triangulation – must be split or it must be merged with another
cluster.

C. Proof of termination

Each peer p that joins has one closest neighbor c, only.
Either peer p does not join c’s cluster, in this case the algorithm
ends, or peer p joins c’s cluster and launches the redetermi-
nation procedure (Algorithm 2), which is only executed once
per join or leave event.

At most |C(p)| − 1 split messages are sent by peer p to all
cluster neighbors except to node c.

Recursively, a receiver n of a split message sends at most
|C(n)| − 1 new split messages. Out of which t messages
(t = |D(p) ∩ D(n)|) are directly ignored. Eventually, every
peer of the cluster got one message, the algorithm terminates
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here since the terminating condition (Algorithm 3, line 1)
is always false. This is a simple “flooding” of the cluster
concerned, whereas no peer runs the split procedure twice and
sends messages a second time.

Exactly the same statements are true for the merge proce-
dure. The cluster concerned is simply renamed, while it is
assured that no peer executes merge twice (Alg. 4, line 1).

V. SIMULATION RESULTS AND EVALUATION

A. Generation of a Clustered Peer Distribution

To evaluate DDC, first clusters of peers must be generated.
For this purpose, we use the so called Lévy Flight [20] that
produces a random walk through the plane or the space where
the Lévy distribution [21] determines the step size. For the
details see [22].

B. The choice of the clustering threshold w

Since no global view of the NVE exists, the optimal value
for w cannot be derived from the peer distribution but must
be chosen in advance.
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Fig. 5. The number of inner–cluster nodes as function of w and β (Average
values of 10 runs with 1000 nodes each).

Values between 0 and 1 are reasonable for w. To find a
value suitable for distributions created with a Lévy Flight, we
run simulations for w = 0.1 . . . 1.0 with step size 0.1 and
β = 0.2 . . . 2.0 with step size 0.05. As it can be noticed in
figure 5 the results are independent of β. Thus, DDC is well
adapted to all possible degrees of clustered node distribution.
The results depend on w, in the figure a “knee“ at w = 0.6 is
observable. The number of inner–cluster nodes (all nodes n for
which C(n) = D(n)) is stable for 0 < w < 0.6 and begins to
decrease at w ≈ 0.6. For w < 0.6 there exists only one cluster
in most cases, therefore the number of inner–cluster nodes is
equal to the total number of nodes. The same observations as
for the number of inner–cluster nodes can be made for the
number of clusters and the number of cluster neighbors per
node. Therefore, we come to the conclusion that the choice
w = 0.6 is suitable for determining clusters in distributions
generated with the Lévy Flight.

C. Difficult cases

In Section V-B we can show that DDC, using the improved
criterion (2), deals well with all sorts of node distributions
generated with the Lévy Flight. However, there will be always
cases where automatic clustering may not perform completely
satisfactory. In the following, we present one, for another case
we refer to [22].

Bridges between clusters: If two clusters are connected via
a bridge (Figure 6) the two clusters can not be distinguished
using local knowledge. With the help of the clustering criterion
it is possible to assume that long links are links between peers
in different clusters, because they are too far away to be in the
same cluster. Whereas we assume that short links are always
intra–cluster links, which is not always true. Sometimes these
very short links can form bridges between clusters. These
bridges are not recognized properly, since only local (one hop)
knowledge is available: clusters connected by bridges are seen
as one cluster by the merge procedure. For the application in
a NVE that does not matter, because we assume that peers
acting in the NVE do not deliberately form bridges, which do
not give any benefit to them.

Fig. 6. Two clusters connected by two bridges are not properly distinguished.

VI. CONCLUSION AND FUTURE WORK

This paper presents DDC, a dynamic and distributed al-
gorithm to cluster nodes in a P2P–based NVE. Clusters of
different shapes and density are detected. The dynamic ap-
proach copes with peers insertion and deletion without having
to restart the cluster detection from scratch. DDC tests locally
if the density changed so much that a cluster has to be split
or that two cluster have to be merged.

We are currently investigating how the clustering threshold
w can be chosen automatically by DDC. As we have seen in
figure 5, the right choice of w is crucial. Since the range of
possible values for w is very small, we envision the following
iterative solution: DDC is run for w = 0.1, . . . , 1.0 with
step size ∆ = 0.2. For each value of w considered, DDC
computes the average cluster size cs(w) and takes as suitable
value the value w for which cs(w −∆)− cs(w) is maximal.
Goosip-based algorithms for computing totals and averages in
a distributed way already exist, see e.g. [23], and DDC can
use them to determine the best w in a fully distributed manner.

Future work also includes dealing in an efficient way with
peer movements in the virtual worlds.
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[20] P. Lévy, Théorie de l’Addition des Variables Aléatoires. Gauthier-
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