
Faster Content Access in KAD

Moritz Steiner, Damiano Carra, and Ernst W. Biersack
Eurécom, Sophia–Antipolis, France
{steiner|carra|erbi}@eurecom.fr

Abstract

Many different Distributed Hash Tables (DHTs) have
been designed, but only few have been successfully de-
ployed. The implementation of a DHT needs to deal with
practical aspects (e.g. related to churn, or to the delay) that
are often only marginally considered in the design.

In this paper, we analyze in detail the content retrieval
process in KAD, the implementation of the DHT Kademlia
that is part of several popular peer-to-peer clients. In par-
ticular, we present a simple model to evaluate the impact of
different design parameters on the overall lookup latency.
We then perform extensive measurements on the lookup per-
formance using an instrumented client. From the analysis
of the results, we propose an improved scheme that is able
to significantly decrease the overall lookup latency without
increasing the overhead.

1 Introduction

In recent years a large number of Distributed Hash Ta-
bles (DHTs) systems, such as Chord [13], CAN [10], or
Pastry [11], has been proposed. There are mainly two basic
approaches for solving the problems related to the search of
the content: structured ones, using a Distributed Hash Table
(DHT) and unstructured ones based on flooding or random
walk. Despite the large effort devoted to the topic, only few
systems have been successfully deployed.

In this paper we focus on the DHT adopted by different
clients that accounts for million of users: KAD, the imple-
mentation of Kademlia [8] contained eMule [4], aMule [1],
and AZUREUS [2]. Overnet [9] uses Kademlia as well, but
an older implementation. We consider the functionalities re-
lated to content management: lookup for searching the tar-
get peers, content publishing and content retrieval. Among
the different publishing schemes, KAD adopts a publishing
node centric approach: the responsibility of the content and
its maintenance is with the publishing node, while the ref-
erences to it are announced and stored into the P2P system.

A major issue in P2P networks is churn, i.e. node ar-

rivals and departures that make the system volatile. In order
to make the references available despite node dynamics, a
peer in KAD publishes multiple copies (replicas) of a refer-
ence by selecting different nodes around the target, which
is determined by the key of the reference. As the time goes
by, some replicas may disappear, or new peers may arrive
and take place in between the peers holding replicas. The
actual location of the references is then scattered: some en-
tries in the routing tables may be missing since the peers
arrived recently or may be stale since the peers already left
the system.

In case of content retrieval, where these references are
searched around the target where they should be published,
robust search mechanisms are necessary.

The aim of our study is to evaluate the performance of
the current implementation of content management in KAD.
We identify its basic building blocks and we analyze the in-
teractions among them. The main contribution of our work
can be summarized as follows:

• We develop a qualitative analysis of the current im-
plementation to understand the impact of the design
parameters on the latency of the overall content pub-
lishing/retrieval process;

• We obtain through measurements many interesting
properties of the KAD P2P system, such as the prob-
ability that an entry in the routing table is stale, or the
round trip delay of the messages;

• We evaluate through measurements the key perfor-
mance metrics, such as overall content retrieval la-
tency, the number of hops needed, and message over-
head of the content retrieval process;

• We propose an alternative approach for the content re-
trieval process – called Integrated Content Lookup – by
strongly coupling the retrieval with the lookup process
and we develop a qualitative analysis of this scheme.

The analysis highlights some performance issues with
the current implementation: the decoupling of the lookup
phase and the content retrieval phase has an adversarial im-
pact on the performance of the retrieval process. These

issues are addressed by the Integrated Content Lookup
scheme we propose. The measurement-based characteriza-
tion of the KAD P2P system shows that (i) a large fraction of
peers in the routing table that are stale and (ii) the empirical
distribution of the message delay presents a non-negligible
tail. These results should be taken into account in the de-
sign of the content management process, since they have a
strong impact on the overall lookup delay.

The remainder of the paper in organized as follows. In
Section 2 we give some background on KAD, the architec-
ture, the content lookup, and the content retrieval. In Sec-
tion 3 we analyze the content retrieval process and identify
the impact of the main parameters on the overall lookup
latency. In Section 4 we present the results of our measure-
ments and analyze the impact of the different parameters.
We propose an improved content retrieval procedure in Sec-
tion 5. In Section 6 we discuss the related work before we
conclude.

2 Content Publishing and Retrieval in KAD

Similar to other DHTs like Chord [13], Can [10], or Pas-
try [11], each KAD node has a global identifier, referred to
as KAD ID, which is 128 bit long random number gener-
ated using a cryptographic hash function. The KAD ID is
generated when the client application is started for the first
time and is then permanently stored. In KAD the distance
between two nodes is measured considering their KAD IDs:
in particular it is calculated as bitwise XOR, i.e. the XOR-
distance d(a, b) between nodes a and b is d(a, b) = a⊕ b.

2.1 KAD Architecture

The basic operations that each node has to perform can
be grouped into two sets: routing management and content
management. Figure 1 shows some of the basic building
blocks of the software architecture.

Routing
Maintenance

R
o

u
ti

n
g

 M
an

ag
em

en
t

C
o

n
te

n
t

M
an

ag
em

en
t

Lookup

Content Search
(Publishing/Retrieval)

Table
Routing

Figure 1. Software architecture of KAD.

Routing management takes care of populating the rout-
ing table and maintaining it. The maintenance requires to
update the entries – called contacts – and to rearrange the
contacts accordingly. A peer stores only a few contacts of
peers that are far away in the KAD ID space and increas-
ingly more contacts to peers closer in the KAD ID space.

If a contact refers to a peer that is offline, we define the
contact as stale. In order to face the problem of stale con-
tacts due to churn (departure of peers), KAD uses redun-
dancy, i.e. the routing table stores more than one contact for
a given distance. The routing management is responsible
also for replying to route requests sent by other nodes dur-
ing the lookup (Sect. 2.2). Since in this paper we focus on
content management, we do not go into the details of the
routing procedure (the interested reader is referred to [14]).
The only information we use is the probability that a contact
contained in the routing table is stale: pstale.

Content management takes care of publishing the infor-
mation about the objects the peer has, as well as retrieving
the objects the peer is looking for. We summarize these two
operations with the term content search, since they actually
use the same procedure (Sect. 2.3). In both cases the peer
has a target KAD ID (of the objects it wants to publish or it
wants to retrieve) that it needs to reach. The KAD ID of an
object is obtained by hashing the keywords in its filename.
Since the peer routing table does not contain the KAD ID of
all peers, the peer needs to build a temporary contact list,
called candidate list or simply candidates, which contains
the contacts that are closer to the target. The temporary list
building process – called lookup – is done iteratively with
the help of the other peers. Since the lookup process and
the content search process represent the focus of our paper,
we explain them in detail in the following sections.

2.2 Lookup

The lookup procedure is responsible for building the can-
didate list with contacts that are closest to the target KAD
ID, i.e. contacts with the longest common prefix to the tar-
get. The procedure, along with the main data structures, is
summarized in ProcedureLookup.

The source peer first retrieves from its routing table the
50 closest contacts to the destination and stores them in the
candidate list. The contacts are ordered by their distance
to the target, the closest first. The discover process is done
starting from this initial candidate list in an iterative way.
The source peer sends a request to the first α contacts (by
default α = 3). The request is called route request. The
source peer remembers the contacts to which a route request
was sent. A route request asks by default for β = 2 closer
contacts contained in the routing tables of the queried peers.
A timeout is associated to the lookup process. In case the
source peer does not receive any reply, it can remove the
stale contacts from the candidate list and it can send out
new route requests.

As soon as one route response arrives, the timeout is reset
and for each of the β contacts in the response it is checked if
the contact has not already been queried and it is not already
in the candidate list. A route request is sent if (i) the new

Procedure Lookup

Data: hash(128bit): target = hash of the target
Data: list: candidates = peers to query, ordered by their

distance to target
Data: list: queried = peers queried with route requests
Data: list: answered = peers that replied to route requests
Data: final int: α = initial degree of parallelism
Data: final int: β = number of contacts requested
Data: final int: t = seconds to wait for route request

messages
Data: timestamp: timeout /* timeout for route

request messages */
Data: int: lookuptime = 0 /* time the lookup

process is running */
Data: int: objectcount = 0 /* number of object

references received */
Data: int: contentreplies = 0 /* number of

content replies received */

Initialization:1
candidates.insert(50 closest peers to target from our2
routing table);
send route request(target,β) to first α candidates;3
queried.insert(first α candidates);4
timeout = now + t;5

6

When route response is received do7
timeout = now + t;8
answered.insert(sender);9
foreach contact ∈ response do10

if contact not ∈ candidates and contact not ∈11
queried then

candidates.insert(contact);12
if dist(contact,target) < dist(sender,target)13
then

/* approaching the target */
if contact is in the α closest contacts to the14
target then

send route request(target,β) to15
contact;
queried.insert(contact);16

17

contact is closer to the target than the peer that provided that
contact, and (ii) it is among the α closest contacts to the
target. This implies that in the extreme case for every of the
α incoming route responses min(α, β) new route requests
are sent out. If the returned contact is not among the α
closest known contacts it is stored in the candidate list.

Figure 2 illustrates an example of the lookup process. On
the top we show the evolution of the candidate list, where
we use the flags ‘s’ and ‘r’ to record if a route request has
been sent or a route response has been received respectively.
α is set to 3 and β is set to 2. The initial list is composed
of contacts a, b, c and d. The distance in the vertical axes
indicates the XOR-distance to the target. At the beginning,
the source peer sends a route request to the top α contacts

a, b and c. Contact c is stale and will never reply. The first
response comes from b and contains β contacts, e and f ,
that the source peer does not know. The new contacts are
inserted in the candidate list: since they are closer to the tar-
get than the other candidates, a route request is sent to them.
At this point the response of a arrives. The new contacts, g
and h, are inserted in the candidate list. Since contact h is
not among the top α contacts, no route request is sent to h.
After some time, the source peer receives the response of e,
but only one of the contacts is inserted in the candidate list,
since the other one is already present in the list.

g

i

s r

b
c

f
h

e
g

a

i
b
c
d

a

a
b
c

e
f

s r

b
c

f
h

e
g

a

s rs r

a

b

c

e,f g,h

f

e

i,g time

X
O

R
−

d
is

ta
n

ce
 t

o
 t

h
e

ta
rg

et

Figure 2. Example of lookup (α = 3; β = 2).

The ProcedureLookup terminates when the route re-
sponses contain only contacts that are either already present
in the candidate list or farther away from the target than the
other top α candidates. At this point, no new route request
is sent and the list becomes stable. The stabilization of the
candidate list represents a key point for KAD. In fact, the
source peer has to exhaustively search for all the contacts
around the target. We show in Sect. 3 how the stabilization
influences the performance.

2.3 Content Search

When the candidate list becomes stable, the source peer
can start the content search process. The designers of KAD
decided to consider a contact sufficiently close to the target
if it shares with it at least the first 8 bits. The space of KAD
IDs that satisfy this constraint is called tolerance zone. At
the time KAD has been designed probably nobody thought
of having such a huge success, with millions of users. How-
ever, today the 8 bit tolerance zone is too big, since it con-
tains up to 10,000 users in the evening hours [12].

Each candidate that falls in the tolerance zone can be
considered for storing or retrieving a reference. The process
is described in ProcedureContent Search.

Procedure Content Search (Publish or Re-
trieval)

Every 1 sec do1
if not stopsearch then2

lookuptime++;3
if lookuptime > 25 then4

stopsearch← true;5

if candidates is empty then6
stopsearch← true;7

if timeout ≤ now then8
/* candidate list is considered

stable */
for i← 0 to candidates.size do9

contact = candidates.get(i);10
if contact ∈ queried then11

if contact ∈ answered and contact in12
tolerance zone around target then

/* the timeout triggers
the actual content
search. */

send content13
request(TYPE, target) to
contact;
candidate.remove(contact);14

else15
/* the timeout triggers a

new route request. */
send route request(target,β) to16
contact;
queried.insert(contact);17
return;18

19
When content response is received do20

contentreplies++;21
if peer is publishing then22

if contentreplies > 10 then23
stopsearch← true;24
return;25

else26
foreach object ∈ response do27

objectcount++;28

if objectcount > 300 then29
stopsearch← true;30

31

In the implementation of KAD, there is no direct com-
munication between the ProcedureLookup and the Proce-
dureContent Search, i.e. when the candidate list be-
comes stable, the ProcedureLookup does not trigger the
ProcedureContent Search. The stabilization of the
candidate list means that in the last t seconds no route re-
sponses are received, where t is the timeout set to 3 seconds
by default. This can happen for two reasons: the closest
peers to the target have been found or the queried peers did

not reply, i.e. the top α contacts in the candidate list are
stale, or overloaded, or the messages were lost.

The solution adopted by KAD to handle these two
different situations is a periodic execution of the Pro-
cedureContent Search: every second the procedure
checks if the candidate list has been stable for at least t sec-
onds. In this case, the procedure iterates through the can-
didate list: a content request is sent if (i) a route request
was sent to the contact, (ii) the contact replied with a route
response and (iii) the contact belongs to the tolerance zone.
The content request contains a ‘store reference’ type
in case of publishing and a ‘search reference’ type
in case of content retrieval (line 13). When the procedure
iterates through the candidate list and finds a contact that
has not been queried, it sends a (single) route request, ac-
tually restarting the ProcedureLookup. This is useful in
case the lookup gets stuck (line 15).

When a content response is received, a counter is incre-
mented. In case of content publishing, the maximum value
for this counter is set to 10: in order to face churn each refer-
ence is published to 10 different peers that belong to the tol-
erance zone. In case of content retrieval, the response con-
tains one or more objects with the requested reference and
the maximum value for the counter is set to 300, i.e. at max-
imum 300 objects that contain the reference are accepted.

The main loop is stopped for one of the following three
reasons: either the maximum search time is reached (lines
4-5), or there are no more contacts to query (lines 6-7), or
enough content response have been received (lines 22-30).

3 Analysis of the Content Search Process

The content management process in KAD is divided into
two procedures – Lookup and Content Search. The
latter contains in a single module both content publishing
and retrieval. Nevertheless, the aims of the two tasks – pub-
lishing and retrieval – are completely different. On the one
hand a peer should try to publish the different replicas as
close as possible to the target: this requires a candidate list
to be stable, a result that can be obtained with large time-
outs – note that, as explained above, a stable candidate list
does not necessarily mean that the contacts are close to the
target. On the other hand, a peer should look for the content
as soon as it is sufficiently close to the target, i.e. when it
enters in the tolerance zone: in this case a stable candidate
list is not necessary.

In this section we analyze the impact on the performance
of the content management approach adopted by KAD. The
main performance metric for the content search process is
the overall lookup latency, i.e. how long it takes to reach the
target and find the content. The delay is mainly influenced
by the following parameters:

pstale probability that a contact is stale;
d round trip delay between two peers;
h number of iterations (hops) necessary to reach

the target;
α number of route requests sent initially;
β number of closer contacts asked for by a route

request;
t time waited for route response messages.

While pstale, d and h cannot be controlled by the content
management process, α, β and t do depend on the imple-
mentation.

3.1 Qualitative Analysis of the Latency

Lookup Latency. For the analysis of the delay, let
FRTT(d) be the cumulative distribution function (CDF) of
the round trip delay for the single hop (see for instance the
empirical CDF, found with measurements, shown in Fig. 5).
At the first iteration (hop and iteration are used interchange-
ably) α route requests are sent. We assume that the proba-
bility that all the α contacts are stale, pα

stale, is negligible.
Among the initial α messages, only α(1− pstale) replies

are received. At each response, γ = min(α, β) messages
can be possibly sent out. The maximum number of route
requests at the second hop, ρ2, max, is then α(1− pstale)γ. In
the following hop, only a fraction of (1− pstale) of contacts
reply and each response can trigger γ new requests. The
maximum number of messages at hop i, ρi, max, is

ρi, max = α[(1− pstale)γ]i (1)

and the cumulative maximum number of messages up to
hop h, ρh, max, is

ρh, max = α
h−1∑
i=0

[(1− pstale)γ]i. (2)

In practice, some contacts in the replies are already known
or they are not inserted in the top α positions of the candi-
date list, so the actual total number of route requests sent up
to hop h will be ρh ≤ ρh, max. Figure 3 shows ρh, max and ρh

for two settings for the parameters α and β. The value of
pstale used to compute ρh, max and the value of ρh have been
found by measurements as will be explained in Sect. 4. We
consider up to three hops, since, as we will see in Sect. 4,
more than 90% of the lookups reach the target in less than
four hops. The actual number of messages sent is close to
the maximum we computed in case of default values for α
and β (3 and 2 respectively). If we increase α and β both
to 4, we receive more duplicates or not interesting contacts,
thus the actual total number of route request messages is far
less than the maximum.

The candidate list stabilizes only after the last response
is received, thus the stabilization time corresponds to the

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 1 2 3

C
u

m
u

la
ti

v
e
 N

u
m

b
e
r

o
f

M
e
s
s
a
g

e
s

Number of Hops

α = 3, β = 2

ρh,max

ρh

 1 2 3
Number of Hops

α = 4, β = 4

Figure 3. Number of route request messages
sent during lookup.

maximum round trip delay over all the route requests that
were sent. To simplify of the analysis, we assume that all
messages are sent at the beginning1. The CDF of the lookup
delay can be found considering that the maximum of two
random variables, which corresponds to the product of their
CDFs (see [3], Eq. 2.6), thus we obtain

Flookup(d) = FRTT(d)ρh . (3)

If we increase α or β (or both), ρh increases, i.e. more mes-
sages are sent. The higher ρh is, the longer the source peer
has to wait for the candidate list stabilization, since it has to
wait for all the responses. This is the contrary of what one
would expect, namely that sending more messages should
increase the chances to reach the target faster. This means
that with the current scheme it is not possible to reduce the
lookup latency by increasing the parameters α and β.

Content Retrieval Latency. Once the candidate list is
stable, the lookup process terminates. At this point the con-
tent retrieval process waits for t seconds (timeout) before
starting to send the content requests. This adds to the over-
all latency t seconds, plus a random delay uniformly dis-
tributed between zero and one second, due to the periodic
execution of the ProcedureContent Search. Moreover
there is an additional round trip delay due to the content
request message.

Overall Lookup Latency. In summary, the overall la-
tency of the content retrieval process is composed by differ-
ent terms. Let flookup(d) be the probability density function
(PDF) of the lookup latency, i.e. the derivative of Flookup(d)
found in Eq. (3). The PDF of the overall lookup delay,
foverall(d) can be found by considering that the sum of two

1This is an unrealistic assumption that provide optimistic results; for
our purpose, this coarse analysis is sufficient to understand the impact of
the parameters.

random variables corresponds to the convolution of their
PDFs, denoted with the symbol ‘∗’. We obtain

foverall(d) = flookup ∗ δt ∗ Unif(0,1)(d) (4)

where δt is the Dirac’s delta function translated in t (the
timeout value) and Unif(0,1) is the PDF of a random vari-
able uniformly distributed between 0 and 1. For simplic-
ity we do not consider the additional round trip delay due
to the content request message since it can be correlated
with the lookup delay. The CDF of the overall lookup de-
lay, Foverall(d), can be found by integrating Eq. (4). Figure 4
shows the CDFs of the overall lookup latency for different
values of α and β. The input CDF of the round trip de-
lay, FRTT(d), and the value of ρh have been obtained by
measurements as we will explain in Sect. 4. As already ob-
served, by increasing the design parameters α and β, the
overall lookup latency increases. The fact that the lookup
process and the content search are decoupled results in an
overall delay that is strongly dependent on the value of the
timeout t.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20 25

F
ra

c
ti

o
n

 o
f

L
o

o
k
u

p
s

Overall Lookup Latency (seconds)

α = 3, β = 2, h = 3 (ρh = 10)

α = 4, β = 4, h = 3 (ρh = 17)

α = 5, β = 2, h = 3 (ρh = 20)

Figure 4. Overall Lookup Latency Foverall(d):
qualitative analysis (t = 3).

4 Evaluation

In this section we measure the performance of the con-
tent management in KAD. We first evaluate the external fac-
tors that we cannot influence: pstale, the empirical CDF of
the round trip delay FRTT(d) and the empirical CDF of the
number of hops h. Then we study the current implementa-
tion and the impact of α, β, and t.

4.1 Measurement Tool and Methodology

For our measurements we have instrumented version
2.1.3 of aMule[1] to log all the messages related to content
management: route requests and route response, as well as
content search and content response. Given a keyword, the

client determines the target KAD ID and starts the Proce-
dureLookup and the ProcedureContent Search. For
each message, we register the time stamp, and for lookup
responses we register the contacts returned, so that we can
evaluate the evolution of the candidate list.

We have extracted 1251 keywords from movie titles
found on IMDB [15] and we use them as input for the in-
strumented client. The keywords are chosen such that the
hashes of these keywords are uniformly distributed over the
hash space. As explained in Sect. 2.3, the content retrieval
process stops at the latest after 25 seconds. This means that
we can launch the lookup for a keyword every half a minute.
For a given set of values for α, β and t one experiment
where we lookup all 1251 keywords takes about 10 hours2.

The metrics derived from the collected data are:

pstale: the probability of stale contacts, found as ratio be-
tween the number of requests sent and responses re-
ceived;

CDF of d: empirical cumulative distribution function of
the round trip delay for a single message;

CDF of h: empirical cumulative distribution function of
the number of hops necessary to reach the target (the
first peer that replied with the content);

CDF of the Overall Lookup Latency: empirical cumula-
tive distribution function of the delay between the first
route request sent and the first content response re-
ceived;

Overhead: The number of route request messages sent
during a lookup process.

The initial number of route requests launched is set to
α = 3; the number of contacts contained in the route re-
sponse is set to β = 2. The timeout is equal to t = 3
seconds. These are the default values in aMule [1]; we per-
form a set of experiments by changing these values and we
evaluate the impact of them on the overall lookup latency
and on the overhead.

4.2 Basic Characteristics

Staleness (pstale). The first parameter we analyze is pstale,
the probability that a contact is stale. We perform the same
set of experiments with two different access networks and
we have found a value of pstale approximately equal to 0.32.
This value has a strong impact on the performance: one
third of the contacts are stale, so a lookup process with low
α may get stuck with high probability. With the default

2We provide the modified files of the aMule client as well as the
list of keywords we used at http://www.eurecom.fr/˜btroup/
kadlookup/.

value α = 3 this happens with probability pα
stale = 0.03. We

will see that this value is partly responsible for the tail of the
empirical CDF of the overall lookup latency (see Fig. 7).

Round Trip Latency (d). The other interesting metric
that is independent from the client settings is the round trip
delay of messages. Figure 5 shows the results of our mea-
surements obtained using two different access networks.

0 1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

Latency (seconds)

F
ra

c
ti

o
n

 o
f

R
o

u
te

 R
e
q

u
e
s
ts

university network

adsl

Figure 5. Empirical CDF of the round trip de-
lay for route requests.

Almost 80% of the responses are received within 700
msec after the request was sent. However, the distribution
has a significant tail, which impacts, as we will see, the
overall lookup latency.

Number of Hops (h). Table 1 shows the empirical prob-
ability mass function of the number of iterations necessary
to reach the target. It is interesting to note that at maximum
4 hops are necessary, and in more than 90% of the cases 3
hops are sufficient. This means that, since the KAD network
has more than one million concurrent users [12], the routing
tables are very detailed (about 1,000 contacts).

Table 1. Number of hops needed per lookup
and the average number of bits gained per
hop.

hop i % of loookups bits gained
terminating at hop i
after i hops

1 1 6.13
2 55 6.02
3 37 5.24
4 7 2.30

Once the content is found, we can evaluate the number
of bits in common between the KAD ID of the keyword we
searched for and the KAD ID of the contact that replied
with the content. This helps in understanding how much

the content is spread around the target. Figure 6 shows the
empirical CDF of the number of bits in common between
the replying peer and the content hash. The wide support of
the empirical CDF indicates that many keywords can be far
from the corresponding target. In Sect. 4.4 we will use this
observation in order to study the impact of the timeout.

10 15 20 25 30
0

0.2

0.4

0.6

0.8

1

Bits in Common

C
D

F

Figure 6. Empirical CDF of the bits in com-
mon between the peers replying to the search
requests with the desired content and the
hash of the content.

4.3 Impact of Different Degrees of Paral-
lelism α

In Figure 7 we show the empirical CDF of the overall
lookup latency when the parameter α varies from 1 to 7 (its
default value is 3). We note a significant difference between
the case α = 1 and the cases α ≥ 2, which is due to the
high value of pstale. In case of α = 1, at each hop only one
message is sent; if the contact is stale and the message is
lost, the process has to wait for the timeout to expire. This
has a strong impact on the overall lookup latency.

With α = 2, the probability that the top 2 contacts are
all stale decreases significantly. For instance, with pstale =
0.32, the probability that at the first hop both contacts are
stale is p2

stale = 0.1. Therefore, the impact of the timeout
due to stale contacts on the overall lookup latency reduces,
and becomes negligible for α ≥ 3.

With α ≥ 3, the different empirical CDFs seems to over-
lap. If we look in detail at the median (Table 2, with β = 2
and t = 3), we see that, as α increases, the median of the
overall lookup latency increases. This result was predicted
by our qualitative analysis in Sect. 3.1 (c.f. Fig. 4). The
higher α, the more messages the source peer sends (ρh), the
longer it takes for the candidate list to stabilize, since it is
influenced by the delay of the last received response.

As also shown in the qualitative analysis in Sect. 3.1, the
support of the empirical CDF starts at d = 4 seconds. In the
best case, in fact, the candidate list stabilizes after approx-
imately 100 milliseconds (each hop takes at least 40 msec,

0 5 10 15 20 25
0

0.2

0.4

0.6

0.8

1

Lookup Latency (seconds)

F
ra

c
ti

o
n

 o
f

lo
o

k
u

p
s

α=7

α=5

α=3

α=2

α=1

Figure 7. Empirical CDF of the overall lookup
latencies as a function of the degree of paral-
lelism α (β = 2; t = 3).

and the mean number of hops is 2.5). Once the list is stable,
the source peer has to wait for the timeout (t = 3 seconds),
and for the periodic execution of the ProcedureContent
Search (in average, 500 msec). If we consider the appli-
cation level processing delay, we obtain almost 4 seconds.

As regards the overhead, Table 2 shows the average num-
ber of route requests sent for different values of α (left hand
side of the table, with β = 2 and t = 3). The number of
messages sent increases linearly with increasing α.

Table 2. The overall lookup latency and the
number of route requests sent per lookup de-
pending on α for different configurations.

α β = 2; t = 3 β = 2; t = 0.5
average # of median average # of median

messages lookup messages lookup
ρh latency ρh latency

1 8.5 9.5 10.4 5.6
2 11.5 6.6 12.8 2.4
3 13.7 5.8 15.2 2.3
4 16.9 6.1 18.0 2.3
5 20.0 6.4 20.6 2.2
6 22.9 6.5 24.0 2.3
7 26.5 6.5 27.7 1.8
8 30.0 6.6 30.4 1.6
9 32.9 6.6 34.0 1.5
10 36.7 6.6 36.8 2.2

4.4 Impact of the Timeout t

The default timeout t in aMule is set to three seconds.
This implies that the candidate list must be stable for three
seconds before the content can be requested. As we showed
in Sect. 4.2 (Fig. 6), the contacts that hold the content may

be spread around the target. This means that we could start
asking for the content as soon as the lookup finds a candi-
date in the tolerance zone, without waiting for the candidate
list stabilization.

One possible way to obtain the above result is to decrease
the time the ProcedureContent Search has to wait be-
fore starting iterating through the candidate list, i.e. we can
decrease the timeout t.

As for α, also t can be changed locally at our instru-
mented client, without need to update all participants in the
network. In Figure 8 we show the empirical CDFs of the
overall lookup latency for different timeouts for the route
request messages.

0 5 10 15 20 25
0

0.2

0.4

0.6

0.8

1

Lookup Latency (seconds)

F
ra

c
ti

o
n

 o
f

L
o

o
k
u

p
s

t=0.5

t=1

t=2

t=3

Figure 8. Empirical CDF of the overall lookup
latencies as a function of the route request
timeout t (α = 3;β = 2).

As the timeout decreases, its influence on the overall la-
tency becomes less significant: reducing the timeout from
the default value of 3 seconds to 0.5 seconds decreases the
median lookup latency by 60%, from 5.8 to 2.3 seconds.
Note that further reducing the timeout would have no effect,
since the periodic execution of the ProcedureContent
Search is set to 1 second. Similar results are obtained
using a different access network, a common ADSL line (re-
sults are not shown here for space constraints).

In Table 2 we show the overhead for a timeout t set to
0.5 seconds (right hand side of the table). If we compare
the default case α = 3, t = 3 with the case α = 3, t = 0.5,
we see that the overhead is slightly increased: this is mainly
due to the fact that the timeout is also used to trigger new
route requests, and, if the responses to the initial α requests
arrive later than t = 0.5 seconds, new requests are sent out.

4.5 Impact of the Number of Contact
Asked For

Once observed the gain that can be obtained by eliminat-
ing the effect of the timeout, we want to evaluate the impact
of the parameters α and β on the overall lookup delay. Re-
call that β is the number of closer contacts that are asked for

by a route request message. Unfortunately, this parameter
cannot be chosen freely in the source code, but can be only
set to 2, 4, or 11. We performed measurements for β = 4
and varying α.

Figure 9 shows the results we obtained with different set-
tings. The more messages we send, the more the overall
lookup latency is reduced. This comes at a cost of increased
overhead. For instance, for α = 5 and β = 4 the mean num-
ber of messages is equal to 29. By increasing further the
values of the parameters, we are not able to notice a signif-
icant improvement in the empirical CDF, since the periodic
execution of the ProcedureContent Search determines
the overall lookup delay.

0 5 10 15 20 25
0

0.2

0.4

0.6

0.8

1

Lookup Latency (seconds)

F
ra

c
to

n
 o

f
L

o
o

k
u

p
s

α=7; β=4; t=0.5

α=5; β=4; t=0.5

α=4; β=4; t=0.5

α=3; β=2; t=0.5

α=3; β=2; t=3

Figure 9. Empirical CDF of the overall lookup
latencies varying α and β.

5 Improving the Content Lookup

The evaluation of the impact of the timeout t on the over-
all lookup latency suggests that a different approach to the
content management process would bring a substantial gain.

The idea is to differentiate the software architecture ac-
cording to the two different aims – publishing or retrieval.
For content publishing, the main issue is the role of the
timeout in the stabilization of the candidate list: a timeout
occurs when candidates do not reply or when candidates
reply with contacts that are not closer than the other candi-
dates. The former increases the total delay and should be
considered separately. The solution is then to decouple the
timeouts for the two different situations. At this point, we
believe that the approach to wait until the list is stable before
publishing (because it contains the best candidates possible)
is the best one.

Instead, for the content retrieval, this process should be
strictly coupled with the lookup process: as soon as the
lookup finds a candidate in the tolerance zone, a content re-
quest should be sent. We call this approach Integrated Con-
tent Lookup (ICL). In Sec. 4.4 we have shown how to obtain
a similar objective with a simple hack of the code: by de-

creasing the timeout t we let the content search process iter-
ate though the candidate list more frequently. The results we
have obtained are pessimistic, since they include the delay
due to the periodic execution of the ProcedureContent
Search. In this section we propose a model that shows
the qualitative performance in terms of the overall lookup
latency of ICL scheme.

We assume that the probability that all the initial α con-
tacts are stale, pα

stale, is negligible. Among the initial α mes-
sages, only α(1 − pstale) replies are received. The process
continues to the next hop using the contacts contained in the
first reply. Thus, the delay of the first hop is the minimum
delay among the replies. It is simple to show that the corre-
sponding CDF for the first hop is equal to (see [3], Eq. 2.8)

F1, ICL(d) = 1− [1− FRTT(d)]α(1−pstale) . (5)

At this point we neglect the contacts contained in the route
responses that come after the first, and concentrate only on
the β contacts we received. This simplification ignores pos-
sible better contacts contained in the responses of the first
hop that are received later: in this sense the analysis is con-
servative. We assume that the contacts contained in the first
response are placed in the top of the candidate list (they
are closer to the target than the candidates already present).
In the second hop the process sends γ = min(α, β) new
route requests. Among them, only γ(1 − pstale) replies are
received. The CDF of the delay for the second hop is

F2, ICL(d) = 1− [1− FRTT(d)]γ(1−pstale) . (6)

For the following hops, we have the same behavior as for the
second one. When a contact replies, the Integrated Content
Lookup process checks if it falls in the tolerance zone and
immediately send a route request. Thus, the overall lookup
latency is given by the sum of the delay of the single hops.
Let fi, ICL(d) be the PDF of the delay for a single hop i, i.e.,
the derivative of Fi, ICL(d) of Eqs.(5) and (6). The PDF of
the overall lookup latency, fICL(d), is then

fICL(d) = f1, ICL ∗ f2, ICL ∗ . . . ∗ fh, ICL(d) (7)

where the convolution is done for all the h hops. The CDF
of the overall lookup delay can be found by integrating
Eq. (7). Figure 10 shows the CDFs of the overall lookup
latency for different values of the parameters α and β, with
a number of hops h = 3. We consider the input CDF of
the round trip delay, FRTT(d), shown in Sect. 4. The de-
sign parameters α and β now have a significant impact on
the overall lookup latency, at a cost of increased overhead.
This qualitative analysis yields the same results as shown
in the experimental evaluation, where we studied different
settings for the parameters α, β and t (Fig. 9). It is interest-
ing to note that the CDF has a similar tail as we found with
measurements: this means that the tail of the input CDF
FRTT(d) has a strong impact, even for large α and β.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20 25

F
ra

c
ti

o
n

 o
f

L
o

o
k
u

p
s

Overall Lookup Latency (seconds)

α = 7, β = 4, h = 3

α = 4, β = 4, h = 3

α = 3, β = 2, h = 3

Figure 10. CDF of the Overall Lookup La-
tency, FICL(d): qualitative analysis.

6 Related Work

Stutzbach and Rejaie [14] did a detailed analysis of the
routing tables and the lookup process in KAD and provide
latency measurements for varying α. However the two re-
maining parameter β and t are not mentioned.

Falkner et al. [5] analyzed the implementation of KAD
in Azureus and measured a median of the overall lookup
latency of 127 seconds (more than 2 minutes!). The au-
thors explain these huge values by the fact that the routing
tables of the Azureus clients contain many stale contacts
and thus timeouts occur frequently during the lookup. We
think that such an high response time is highly incredible,
if the system really suffered from such a high response time
it would be unusable. The measurement we did on KAD
in aMule using the default configuration showed a median
overall lookup time of 5.8 seconds.

Li et al. [7] describe the lookup process in KAD identi-
fying the parameters α and β. Using the one hop latency
data obtained with the King method [6], a simulation of the
overall lookup latency was performed with p2psim. This
simulation found an average overall lookup latency of 250
milliseconds.

7 Discussion and Conclusions

In this paper we study the content management process
implemented of KADas implemented in aMule.

We perform measurements with two different objectives:
(i) we characterize the external factors that influence the
performance – such as the probability that entries in the
routing tables are stale, or the round trip delay of messages;
(ii) we evaluate the influence of the design parameters –
such as the number of requests sent initially or the timeout
– on the performance.

We show that, by coupling the lookup procedure and the
the content retrieval process, it is possible to decrease the

overall latency while keeping the overhead the same. The
results we obtain suggest that the scheme can be further im-
proved if we let the design parameters to change, i.e. if we
make them adaptive. For instance, in contexts with a low
churn, the probability that entries are stale (pstale) reduces,
and thus it is not necessary to have a large degree of paral-
lelism in the sent requests. In this case we may choose α
and β as functions of pstale, rather than simply taking fixed
values. The same applies for timeout t, i.e. we may choose
t as a function of d, i.e. the (estimated) round trip delay.

Acknowledgments

The authors would like to thank Antonio Trifilo and
Emanuele Leomanni for their work on the aMule code as
well as Taoufik En-Najjary for the fruitful discussions dur-
ing the early stages of this work.

References

[1] A-Mule. http://www.amule.org/.
[2] Azureus. http://azureus.sourceforge.net/.
[3] E. Castillo. Extreme Value Theory in Engineering. Aca-

demic Press, Inc., 1988.
[4] E-Mule. http://www.emule-project.net/.
[5] J. Falkner, M. Piatek, J. P. John, A. Krishnamurthy, and

T. Anderson. Profiling a Million User DHT. In Proc. of
IMC, 2007.

[6] K. P. Gummadi, S. Saroiu, and S. D. Gribble. King: Esti-
mating latency between arbitrary internet end hosts. In Proc.
of Internet Measurement Workshop, 2002.

[7] J. Li, J. Stribling, R. Morris, M. Kaashoek, and T. Gil. A
performance vs. cost framework for evaluating DHT design
tradeoffs under churn. In Proc. of INFOCOM, 2005.

[8] P. Maymounkov and D. Mazieres. Kademlia: A Peer-to-peer
informatiion system based on the XOR metric. In Proc. of
International Workshop on Peer-to-Peer Systems (IPTPS),
2002.

[9] Overnet. http://www.overnet.org/.
[10] S. Ratnasamy, M. Handley, R. Karp, and S. Shenker. A scal-

able content-addressable network. In Proc. of SIGCOMM,
2001.

[11] A. Rowstron and P. Druschel. Pastry: Scalable, distributed
object location and routing for large-scale Peer-to-peer sys-
tems. In Proc. of Middleware, Heidelberg, Germany, 2001.

[12] M. Steiner, T. En-Najjary, and E. W. Biersack. A Global
View of KAD. In Proc. of IMC, 2007.

[13] I. Stoica, R. Morris, D. Karger, M. Kaashoek, and H. Bal-
akrishnan. Chord: A scalable Peer-to-peer lookup service
for Internet applications. In Proc. of SIGCOMM, 2001.

[14] D. Stutzbach and R. Rejaie. Improving lookup performance
over a widely-deployed DHT. In Proc. of INFOCOM, 2006.

[15] The Internet Movie Database.
http://www.imdb.com/.

