
Characterizing JSON Traffic Patterns on a CDN
Santiago Vargas

Stony Brook University
savargas@cs.stonybrook.edu

Utkarsh Goel
Akamai Technologies
ugoel@akamai.com

Moritz Steiner
Akamai Technologies
mosteine@akamai.com

Aruna Balasubramanian
Stony Brook University

arunab@cs.stonybrook.edu

Abstract
Content delivery networks serve a major fraction of the Internet
traffic, and their geographically deployed infrastructure makes them
a good vantage point to observe traffic access patterns. We perform
a large-scale investigation to characterize Web traffic patterns ob-
served from a major CDN infrastructure. Specifically, we discover
that responses with application/json content-type form a grow-
ing majority of all HTTP requests. As a result, we seek to understand
what types of devices and applications are requesting JSON objects
and explore opportunities to optimize CDN delivery of JSON traffic.
Our study shows that mobile applications account for at least 52% of
JSON traffic on the CDN and embedded devices account for another
12% of all JSON traffic. We also find that more than 55% of JSON traf-
fic on the CDN is uncacheable, showing that a large portion of JSON
traffic on the CDN is dynamic. By further looking at patterns of pe-
riodicity in requests, we find that 6.3% of JSON traffic is periodically
requested and reflects the use of (partially) autonomous software
systems, IoT devices, and other kinds of machine-to-machine com-
munication. Finally, we explore dependencies in JSON traffic through
the lens of ngram models and find that these models can capture
patterns between subsequent requests. We can potentially leverage
this to prefetch requests, improving the cache hit ratio.

CCS Concepts
• Networks→ Network measurement.

Keywords
Content Delivery Networks (CDNs), JSON, Web

ACM Reference Format:
Santiago Vargas, Utkarsh Goel, Moritz Steiner, and Aruna Balasubramanian.
2019. Characterizing JSONTraffic Patterns on a CDN. In InternetMeasurement
Conference (IMC ’19), October 21–23, 2019, Amsterdam, Netherlands. ACM,
New York, NY, USA, 7 pages. https://doi.org/10.1145/3355369.3355594

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
IMC ’19, October 21–23, 2019, Amsterdam, Netherlands
© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-6948-0/19/10. . . $15.00
https://doi.org/10.1145/3355369.3355594

Figure 1: Ratio of JSON to HTML requests on the CDN.

1 Introduction
Content delivery networks (CDNs) serve a large fraction of Internet
traffic, evenmore than 50% of allWeb traffic for some carriers [16, 23].
CDNs are also a core part of Internet infrastructure used to optimize,
secure, and reliably deliver content. As a result, CDNs are a good
vantage point to observe large scale Internet patterns, which are
constantly changing [28].

We study the traffic patterns in a large CDN and observe one
such changing pattern: that of the growth of the JSON content type.
JSON, which stands for JavaScript Object Notation, is a format used
for transferring data in key-value pairs [5]. We find that JSON has
outgrown HTML, CSS, and JS content in the last 3 years, and is
the leading content type on the CDN. Figure 1 shows the growth
trend of JSON requests to HTML requests received by the CDN since
2016 using counts of the total number of JSON and HTML requests
recorded by all CDN edge servers. At the end of the observation
period, JSON is requested more than HTML content by over 4×.

However, little is known about how JSON is used on the Web.
HTML, which has been one of most popular content types for Web
traffic, is well studied. As a result, there are several optimization
techniques designed to optimally deliver HTML content. These
optimizations range from rewriting HTML [21], prefetching [27],
and pushing sub-resources [13]. However, the same is not true for
JSON. Our goal in this paper is to shed light on what JSON traffic
looks like from the vantage point of a CDN. Specifically, we seek to
answers to the following questions:

• What applications and devices are consuming JSON traffic?
• What are the types of JSON requests and responses and what
are their properties?

• What are the common patterns of JSON traffic? Can these
patterns be exploited for optimization?

195

IMC ’19, October 21–23, 2019, Amsterdam, Netherlands Vargas et al.

To answer the above questions, we analyze the logs of a total of 35
million JSON requests collected from the edge servers of Akamai’s
network over a 24 hour period. We start by creating a taxonomy of
JSON traffic properties based on the data we collect. Specifically, we
divide the properties of JSON traffic into traffic source, request type,
and response type and analyze each component individually.

In our data, 88% of JSON traffic is non-browser traffic, and only
12% is requested by browsers. At least 52% of JSON traffic is also
from native mobile applications. This result is particularly impor-
tant because browser traffic is guided by an HTML manifest file.
This provides optimization opportunities including prefetching and
server push. However, non-browser traffic from mobile apps are less
standardized and harder to optimize. Further, we find that at least
12% of JSON requests come from embedded devices, including game
consoles and smart watches. These segments of devices are often
bottlenecked in terms of network performance.

Our observations in terms of request/response is that 55% of JSON
requests are not cacheable, Thus, the slower mobile and embedded
devices are largely not benefiting from caching optimization. In fact,
we find that 50% of domains do not use CDN caching at all. Instead,
these domains use other security and performance products for their
JSON traffic. Cacheability also depends on domain industry category.
Media, News, and Sports serve highly static, unchanging content.
Conversely, Financial, Streaming, and Gaming domains serve JSON
that is personalized or meant for one-time use.

Finally, our examination of the JSON traffic in mobile applications
shows two common traffic patterns. First, there is a non-trivial
amount of periodic JSON traffic from mobile applications. Second,
we find that, once a JSON object is requested, the next request can
be predicted with some accuracy. JSON requests from mobile apps
in fact serve as manifest files that contain references to further
JSON objects. We explore these two patterns in this paper to present
directions for JSON traffic optimization.

We look at the most requested objects and find that 6.3% of JSON
requests are periodic. Examples include pulling latest messages in a
messaging system, periodically updating scores for online gaming,
and telemetry reporting. For more than 20% of objects that are
periodically requested, 50% of the clients that request these objects
do so with matching time signals. This periodicity suggests that
the requests are coming from autonomous software systems, IoT
devices, or other kind of machine-to-machine communication. Since
these requests are not human-triggered, one possible optimization
is to de-prioritize these requests.

Second, we find that in many cases, a JSON request can predict
a subsequent JSON request with about 70% accuracy. Prediction of
these objects can be used to prefetch future requests in the case of
cache misses and unchangeable content. Further, up to 87% accuracy
is possible when clustering similar requests by URL. This shows that
clients share general patterns across requested objects. Apart from
performance, prediction of clustered objects can also be used for
anomaly detection of unusual requests.

While we characterize JSON traffic and look at two patterns
inside of the traffic, we have just scratched the surface of analyzing
JSON traffic. The increase in JSON traffic is an important trend with
implications on the Internet. Since JSON traffic has grown quickly
in the last years, it is important to analyze this trend and understand
this new segment of traffic.

JSON Manifest Traffic Pattern
1. Request: GET→ news_example.com/stories
Response: ← "application/json"
[{"article_id": 1234,
"article_title":"Lorem Ipsum",
"image_url":"news_example.com/image1234.jpg"

}, ...]
2. Request: GET→ news_example.com/article/1234
Response: ← "application/json"
{"video": "news_example.com/video1234.mp4",
"article":"Lorem ipsum dolor...",
"images":["image1_url", "image2_url"]
}

Table 1: Example of a mobile news app using JSON to request
1) a summary of stories and 2) content for a specific article.

2 Background
In this section, we first describe the JSON format [5] and then de-
scribe why and how applications request JSON objects.

2.1 What is JSON?
JSON, which stands for JavaScript Object Notation, is a format used
for transferring data in key-value pairs. JSON is more lightweight
than formats like XML and HTML, which require opening and clos-
ing tags. But, JSON retains the same benefits as XML and HTML
of being text-based and hierarchical unlike plain-text and binary
formats. Because JSON is structured, standardized, and lightweight,
this makes it a portable format that can be used on many platforms.
Further, JSON can be parsed and programmed against in any envi-
ronment that runs JavaScript [1].

2.2 Why use JSON?
Traditionallywithweb andmedia content, both the view (layout) and
data are not cleanly separated. For example, server-side rendered
HTML contains information about both the layout and the data
inside the web page; not all layout information is contained in the
style sheet (CSS). However, with the advent of web and mobile
applications, many developers have taken to separate the client view,
application logic, and application data, such as with progressive web
applications [9] on browsers. Developers can then control when
and how often to update both application views and data separately.
Since each individual component of an application need not be
updated, bandwidth overhead is reduced by caching unchanged
views or unchanged data. Thus, these applications generally cache
static application layouts and logic at the client. Meanwhile, data
is transported between client and server in a specified data format,
such as JSON.

2.3 JSON Traffic Examples
Based on popular applications that use JSON in the CDN, in Table
1 we illustrate two examples of how JSON is used. 1) Applications
request a JSON manifest object that contains direct (URL) or indirect
(object ID) references to other objects. In the case of a popular news
application, we observe that the application first retrieves a JSON
manifest containing references to text and image contents for many

196

Characterizing JSON Traffic Patterns on a CDN IMC ’19, October 21–23, 2019, Amsterdam, Netherlands

Dataset # of Logs Duration # of Domains
Short-term 25 million 10 mins ∼5K
Long-term 10 million 24 hrs ∼170

Table 2: Summary of our datasets.

articles. Afterwards, subsequent content is retrieved, like full text,
images, and videos for select news articles. 2) Applications peri-
odically send requests to a webservice for telemetry purposes. For
example, some applications send requests in a polling-like behavior
for tracking or advertising.

3 Methodology
In this section, we describe the platform used to collect network
request data and outline the significance of individual data fields.

3.1 Data Collection
This study uses server logs gathered from Akamai, a leading CDN
network. The Akamai network consists of around 240k distributed
servers in about 140 countries and 1600 networks worldwide [3].
Additionally, the Akamai CDN serves around 3 trillion HTTP re-
quests daily [25]. This network has a large market share of Fortune
500 companies and top Alexa sites.

Each time a client makes an HTTP request to an Akamai edge
server, a request log is generated at the server. We collect logs from
CDN edge servers. The request information we collect from each log
includes the time of the request, object caching information, a client
IP address that is hashed for anonymity, and select HTTP request
and response header information including user-agent, mime type,
and object URL.

Since it would be infeasible to collect request data for the entire
Akamai network over an extended period of time, we collect two
datasets, a shorter, wider dataset and a narrower, but longer-term
dataset. Note, since traffic patterns are constantly changing, our
datasets may be influenced by the capture lengths and locations.
Table 2 summarizes the two datasets we collect. The short-term
dataset is collected over all machines in the entire CDN network to
have a large coverage of diverse network traffic. We use this dataset
for generalized JSON characterization in §4. The long-term dataset is
collected from all machines in three CDN vantage points in Seattle,
WA to record requests to objects from a subset of domains for a
longer period of time. Since this dataset covers long periods of time,
we use this dataset to analyze patterns in §5.

3.2 JSON Traffic Taxonomy
As a first step, we define a taxonomy for JSON traffic to more easily
study the traffic. We categorize the traffic based on the traffic source,
request type, and response type. Figure 2 shows this taxonomy.
Below we define each property of the taxonomy and explain how
CDN request logs data captures the properties.
Identifying Content Type: First, we use the HTTP mime type
header field to identify the content-type of traffic. Content-type
values are standardized by the IANA and follow a specific format
[7]. Applications, such as browsers, rely upon the content-type of
a request to determine what type of content is being downloaded

	�����"��������(����)

��%"��

�%����
�"����"����"�

�������
����"�$��

���������
��&���+�� +�
�"�'#�"+��"�
�����'�

��!%�#$

� �����
,
���-��"�
��'������
,���-

��# ��#�

�����������+�
��������$+�
������
�##

��*�

Figure 2: JSON traffic taxonomy.

[8]. To filter for JSON traffic, we only include HTTP requests that
contain "application/json" in the HTTP mime type header.
Traffic Source: Traffic source describes the initiator of a JSON re-
quest. Two properties of traffic source are 1) human-triggered vs.
machine-generated traffic and 2) device type.

Human-triggered traffic is traffic produced as a direct interaction
between a human with a system. For example, in the case of a hu-
man interaction that opens a news app on a smartphone and loads
an article which triggers the JSON traffic in Table 1, this traffic is
considered human-triggered JSON traffic. All other JSON traffic is
considered machine-generated traffic, such as traffic that is automat-
ically generated from a script. We use timing information to analyze
this traffic in §5.1.

Another property of the JSON traffic is device type and application
type. For device type, we consider the following categories: mobiles,
desktops/laptops, and embedded devices. Embedded devices are non-
mobile, non-desktop devices, such as game consoles, IoTs, smart TVs,
etc. We use the user-agent HTTP header field to identify devices and
applications that generate traffic similar to previous work [18, 33].
To identify device type, we group by system identifiers in the user-
agent field, such as "Android", "iPhone", "Windows", etc. Note, since
the user-agent field is not standardized across many platforms and
other applications, there may be false positives and negatives as well
as missing values when identifying device-type using the user-agent
field. To reduce misclassification, we use Akamai’s EDC database
to further extract device characteristics [2]. We also label the traffic
source as Unknown when a user-agent is missing or is unidentifiable.
To separate between browser and non-browser traffic, we use a
database of browser user agents [11] since browsers use well-formed
user-agent strings.
Request Type: In the taxonomy, we outline two types of JSON
requests, uploads and downloads. Upload requests are used to send
data from a device to a server, and downloads retrieve data from a
server. To distinguish between upload and download requests, we
use the HTTP method header of a request. By convention the GET
method, as the name suggests, does not send data and is used to
download content. Likewise, the POST method uploads data and
also receives JSON object responses. Though clients can deviate
in behavior, this study assumes conventional client behavior of
GET and POST methods for uploads and downloads respectively as
specified by the IETF [15].
Response Type: There are 2 aspects of the response type: size and
cacheability. Response size relates to the number of bytes served
per each response and directly affects the CDN’s costs of serving
JSON requests. For cacheability, CDN cache logs give insights on the
type of traffic that is being served. CDN customers decide whether a

197

IMC ’19, October 21–23, 2019, Amsterdam, Netherlands Vargas et al.

Figure 3: Categorization by device type.

response is cacheable and provide this information to Akamai’s edge
cache system for use in serving responses from cache or customer
servers. If JSON traffic is not cacheable, then it is dynamic content
and/or personalized. If traffic is either not cacheable or a miss on
the CDN, then the response is provided by the CDN customer’s own
infrastructure.

4 Characterizing JSON Traffic
We analyze and categorize the JSON traffic according to the taxon-
omy in Figure 2.
Traffic Source: Figure 3 shows the breakdown of JSON requests in
terms of traffic source. Mobile smartphones and embedded devices
account for at least 55% and 12% of all JSON traffic respectively.
Within the embedded devices, we observe smart watches, game
console, and smart TVs. Finally, 24% of traffic is Unknown, meaning
that the traffic either does not contain a user agent (most of the
traffic) or the user agent cannot be linked to a platform. We also
find that the distribution of user agent strings is as follows: 73% of
UA strings are Mobile, 17% are Embedded, 3% are Desktop, and the
remaining 7% are Unknown.

Interestingly, 88% of the JSON traffic is non-browser traffic (not
shown in figure). If we specifically look at mobile traffic, mobile
browser-based traffic is 2.5% of all requests. No browser traffic is
detected on embedded devices. The takeaway is that a large portion
of the traffic includes native applications on mobiles and embedded
devices. Browser traffic has a well known pattern that is derived
from the HTML template; the result is they can be optimized using
prioritized push strategies [13] or prefetching [27]. However, mobile
applications are independent entities that tends to have varied traffic
patterns.
Request Type: In the taxonomy, we identify two types of JSON
requests, uploads and downloads based on the GET and POST HTTP
methods. We find that 84% of requests are GET requests meaning
that the majority of JSON traffic is download traffic. 96% of the
remaining requests are POST traffic, which uploads data values to
the server. We further explore the impact of uploads vs. downloads
as they relate to cacheability in the next section.
Response Type: The CDN allows customers to configure cacheabil-
ity of each individual request. If a request is for an uncacheable
object, the request must propagate from the edge server through
the CDN to origin content servers in order to obtain a response.
Then, the response object is returned to the original edge server to
be returned to the requesting client.

Figure 4: Heatmap of domain cacheability by category.

Nearly 55% of all JSON traffic is not cacheable. This means that
more than over half of the JSON requests, the most popular CDN
content-type, are tunneled through the CDN to origin servers. An-
other interesting aspect is that the average size of JSON responses
has decreased by around 28% since 2016 (not shown in figure). JSON
objects are also 24% and 87% smaller than HTML responses at the
median and 75th percentiles respectively. Reduced response sizes
increase the CPU cost-per-byte of serving JSON traffic, since a large
chunk of the total request cost (CPU, network, IO, etc...) is tied
to CPU request processing, which must be taken into account by
network operators when provisioning the network.

We further categorize the domains in our dataset according to the
industry associated with the domain using a commercial service [10].
Figure 4 shows a heatmap of domain cacheability grouped by the
associated domain category for the top 11 domain categories. First,
nearly 50% of domains serve content that is never cacheable and
another 30% serve content that is always cacheable. Therefore, many
CDN customers that serve JSON do not cache on the CDN and
instead use Akamai for traffic performance, security, and analytics [4,
6, 22].

Second, our categorization shows that specific segments of indus-
try generally hold similar business patterns. For example, Financial
Service, Streaming, and Gaming domains are not cacheable since
these services serve one-time use or personalized content. Con-
versely, the majority of News/Media, Sports, and Entertainment
domains are mostly cacheable since their content is highly static.

5 JSON Request Patterns
We observe two patterns in JSON requests that have implications
on optimizing JSON and discuss them below.

5.1 Periodicity
We first study periodicity in the JSON traffic. The difficulty in finding
periodicity in network traffic is noise in traffic signals. Because of
network and program delays, one cannot rely on cleanly receiving a
script period. Instead, we extend existing previous signal processing
techniques [29] that only show the significant periods. The key idea
is to use a combination of autocorrelation (on the time domain) and
fourier transform (on the frequency domain) to extract key periods
and randomness to filter noisy periods.

198

Characterizing JSON Traffic Patterns on a CDN IMC ’19, October 21–23, 2019, Amsterdam, Netherlands

Figure 5: Histogram of JSON object periods.

Let an object flow be the sequence of requests made by all clients
to a specific object, identified by a unique URL in the dataset. Let a
client-object flow, COf low , be a subsequence of object flow requests
from one client, identified by a user agent and anonymized client
IP pair. To obtain significant results, we filter out client-object flows
with less than 10 requests as well as object flows with less than 10
clients, resulting in flows containing the top 25% of objects requested.
We extend the signal processing algorithm [29] to our dataset as
follows:

(1) Calculate the autocorrelation and fourier transform for each
COf low .

(2) Randomly permute COf low a total of x times and calculate
autocorrelation and fourier transform for each permutation,
recording the max period and frequency of autocorrelation
and fourier transform respectively.

(3) Of all max periods and frequencies, take the (x −1)th largest
period and frequency as thresholds for autocorrelation and
fourier transform of the original unpermuted COf low .

(4) Using the thresholds to discard insignificant periods and fre-
quencies, line up autocorrelation and fourier transform of
COf low to find the most significant frequency and period as
the overall COf low period.

Note, the above algorithm either returns the most significant period
(i.e., largest peak in autocorrelation) or no period for the flow, due to
noise thresholding. As a result, we assume a flow only contains one
significant period and leave multi-period analysis for future work.
Choosing Parameters: We run the above algorithm on all object
and client-object flows to determine a flow period. Note the above
algorithm is parameterized by x , where larger values of x provide
higher accuracy at the expense of computation. We empirically
find that values of x greater than 100 do not produce significantly
different results in our dataset. Therefore, we use x = 100 in our
experiments. For autocorrelation and fourier transform, we also
set sampling rates of 1 second assuming that accurate detection of
periods less than this sampling rate is difficult due to network jitter.
Results: If both object and client-object have periods and these peri-
ods match, we label the client flow as periodic with respect to its
object. We run the above analysis on our long-term dataset, since
we do not want to limit the analysis to short periods, and find that
6.3% of JSON requests are periodic. This translates to a significant
share of Akamai’s requests given that JSON is the most requested
content type. Figure 5 shows that the object flow periods detected by
the above algorithm are largely on even time intervals. For example,

Figure 6: CDF of the percent of periodic clients across objects.

there are spikes are 30s, 1m, 2m, 3m, 10m, 15m, and 30m. Figure
6 quantifies how many clients-object flows share the same object
flow period (ie. how many clients all request the same periodicity).
Highlighted in the figure, we see that 20% of periodic objects have a
majority (>50%) of clients that make periodic requests. Using the
metrics from Section 4, we find that periodic traffic is 56.2% un-
cacheable and 78% upload traffic. Therefore, a large amount of this
traffic flows through the CDN to customer infrastructure.

Since these objects are highly requested periodically and the
majority of clients share the same period, these objects are likely
not requested by humans and are instead programmaticmachine-
to-machine traffic. Though these requests are not definitively
machine-generated, they are most likely machine-to-machine re-
quests since it is highly unlikely for a large group of humans to
accurately send many request in periodic intervals over sustained
periods of time. Understanding this traffic as machine-to-machine
allows network operators to isolate and investigate these requested
objects in order to apply further management policies and improve
user QoE. One possible optimization is for CDN operators to de-
prioritize machine-to-machine traffic since a human is not waiting
for the response. Periodic information can also be used for anomaly
detection when an object is requested at a different period than it is
intended to be requested.

5.2 Request Prediction
The second application pattern shows that JSON requests are amenable
to prefetching, since given a request, we can predict the subsequent
JSON requests. This usage pattern is similar to other web and mo-
bile app dependencies where previous approaches have used static
and dynamic program analysis to discover resource dependencies
[14, 20].

Since our JSON traffic is not application or platform specific, we
do not use program analysis like prior approaches. Instead, wemodel
the relationship between requests using a backoff ngram model [12].
The ngram model captures transition probabilities from a subse-
quence of previously requested objects to the next request in the
client flow. Though the ngram model does not directly show a de-
pendency relationship between two objects unlike program analysis,
it is a data-driven method to empirically show probable object re-
quests. Furthermore, this approach takes into account the popularity
of highly requested items, unlike standard program analysis.
Methodology: To evaluate this approach, we first split the JSON
dataset by unique clients into a testing and training set. As a feature

199

IMC ’19, October 21–23, 2019, Amsterdam, Netherlands Vargas et al.

Accuracy
K Clustered URLs Actual URLs
1 .65 .45
5 .84 .64
10 .87 .69

Table 3: NGram model accuracy for URLs with a history of
N = 1 and varying K , where K is a parameter for choosing
most probable requests.

to the ngram, we use request URLs, such that a previous URL transi-
tions to the next URL. Since 84% of JSON requests are GET requests
(see §4), they do not carry request bodies and the URL is sufficient to
fetch a response. However, request cookies are not considered due
to privacy and client fingerprinting concerns. Requests are split into
client request flows, ngram transitions are created from individual
client requests, and these ngram transitions are used to train the
ngram model.
Evaluation: We evaluate this method on two ngram models, one
with actual, unmodified URLs and one with clustered URLs, using
clustering similar to URL argument clustering in [13]. Since 84% of
requests are GET requests, unmodified URLs can be used to request
these objects directly. However, when URLs contain unique client
information, such as client id’s or coordinates, clustered URLs can
reveal general object dependencies for the application. The ngram
models are also tested on individual client request flows.

We examine the change in accuracy when predicting with larger
N and K parameters. N denotes how much history to use when
predicting where N = 1 predicts only using the most recent request
(ie. history of 1). K selects the number of requests to predict in
probability order.

Table 3 shows that predicting a larger set of requests (larger K)
greatly improves accuracy even with only immediate history of
the previous request, ie. N = 1. Using larger N like N = 5 only
marginally increases accuracy by up to 5%. Overall, using this model
we achieve about 70% prediction accuracy for actual URLs. This is a
promising result showing that request order is highly probabilistic
and hints that more robust machine learning systems may be able to
better predict requests. 87% accuracy is also achieved for clustered
URL showing that JSON requests exhibit general ordering patterns.

Overall, these results show that a JSON request prediction system
can be used by CDNs to perform prefetching for cacheable requests.
HTTP Server Push can also be used to preemptively send responses
to the client, improving overall response time. Also, the general
ordering patterns discovered can be used to better inform current
caching or load balancing systems, and to perform anomaly detection
(i.e., detect when a highly unlikely object is requested). While our
prediction analysis examines request access order, future work can
also take into account request interarrival time to better inform
prediction systems.

6 Related Works
Web Proxy Optimization: Given that the CDN can serve as an
HTTP proxy, there is a plethora of literature on proxy optimizations
for web content. One group of works seek to discover network
and computational bottlenecks caused by inter-dependencies in
browsing workloads [20, 30]. Researchers have also explored using

split-browser architectures, which are modified browsers and cloud
proxies work together that selectively offload expensive parts of
the web page load to the proxy [27, 31]. Yet, other works improve
webpage performance by rewriting pages for efficient execution [21].
Similarly, we explore dependency patterns in JSON traffic through
the lens of traffic prediction. In the mobile web space, researchers
using program analysis and configuration to proposed local and
remote prefetching proxies that improve mobile application quality
of experience [14, 17, 35]. By contrast we propose data-driven CDN
prefetching to improve JSON traffic delivery performance.
Network Traffic Characterization: One line of research looks at
characterizing Internet trends using network data logs. Researchers
have explored extracting client information from user-agent strings
to characterize network traffic [18, 33]. Another vein of work looks at
the problem of Mobile Application Identification, mapping network
traffic to the applications that generated the traffic [19, 32–34]. We
also breakdown JSON traffic by device and application types using
user-agent. In [26], researchers use CDN baseline activity for blocks
of IP addresses to identify activity anomalies in the traffic for these
blocks and determine if there is an internet outage for these IPs.
Pujol et al. [24] identify machine-to-machine traffic by checking for
valid TCP or HTTP responses from standard web ports. Instead, we
find periodicity patterns that identify machine-to-machine JSON
traffic.

7 Implications & Limitations
In this section, we outline implications and limitations of this study.
First, since the number of JSON requests has been growing while the
size of the JSON objects has decreased, networking systems should
account for changes when serving this type of content and provision-
ing new infrastructure. Secondly, §5 explains two patterns present
in JSON traffic, periodicity and request ordering. We suggest that
these patterns can be exploited by network operators to implement
management policies for periodic traffic and to build prediction-
based systems to improve network performance. While we suggest
deprioritization of periodic traffic over, network operators should
evaluate the effects of deprioritization on user QoE. Lastly, this study
looks at two large-scale datasets collected from Akamai’s network,
a five minute dataset over Akamai’s entire network and a day-long
dataset covering one geographic region. Future studies can analyze
longer datasets covering more regions in order to explore geographic
and temporal differences in JSON traffic patterns. Though this study
presents these initial implications, it is important to further analyze
the traffic shift to JSON for further implications.

8 Conclusion
In this work, we explore the prominence of JSON traffic on a large
CDN. We first examine content-types on the CDN and find that
JSON content is largely more requested than HTML and there is a
growth trend for JSON traffic. Next, we create a taxonomy of JSON
traffic and analyze HTTP request logs from CDN edge servers to
further explore what types of clients are using JSON content, what
types of requests and responses are seen on the CDN, and how we
can use JSON patterns to optimize JSON traffic. We find that the
majority of JSON traffic is non-standardized traffic that is requested
by mobile and embedded devices. We also see that more than half

200

Characterizing JSON Traffic Patterns on a CDN IMC ’19, October 21–23, 2019, Amsterdam, Netherlands

of all JSON traffic is not cacheable, especially for specific industries.
Next, we find that at least 6.3% of JSON traffic is machine-to-machine
traffic and CDN operators can deprioritize this traffic as it is not
human-triggered and no human is waiting while staring at a screen.
Finally, we explore prediction of JSON content and note that since
87% of content can be predicted, prefetching is a viable optimization
for JSON traffic.

References
[1] Ecmascript 5.1 language specification. https://www.ecma-international.org/ecma-

262/5.1/#sec-15.12.2.
[2] Edge Device Characteristics - Akamai. https://learn.akamai.com/en-us/webhelp/

ion/oca/GUID-8DC8807F-B65E-40EC-BB14-896C9F12026E.html.
[3] Fact & Figures - Akamai. https://www.akamai.com/us/en/about/facts-figures.jsp.
[4] ION Web Performance Optimization - Akamai. https://www.akamai.com/us/en/

products/performance/web-performance-optimization.jsp.
[5] The json data interchange syntax. http://www.ecma-international.org/

publications/files/ECMA-ST/ECMA-404.pdf.
[6] Kona Site Defender - Akamai. https://www.akamai.com/us/en/products/security/

kona-site-defender.jsp.
[7] Media types - iana. https://www.iana.org/assignments/media-types/media-types.

xhtml.
[8] Mime types - mdn. https://developer.mozilla.org/en-US/docs/Web/HTTP/Basics_

of_HTTP/MIME_types.
[9] Progressive web apps - the app shell model. https://developers.google.com/web/

fundamentals/architecture/app-shell.
[10] Symmantec Sitereview. https://sitereview.bluecoat.com.
[11] User agent string database. http://www.useragentstring.com/.
[12] Lecture on Ngrams and Backoff Models, 2009. http://l2r.cs.uiuc.edu/~danr/Teaching/

CS546-09/Lectures/Lec5-Stat-09-ext.pdf.
[13] Butkiewicz, M., Wang, D., Wu, Z., Madhyastha, H. V., and Sekar, V. Klotski:

Reprioritizing web content to improve user experience on mobile devices. In 12th
USENIX Symposium on Networked Systems Design and Implementation (NSDI 15)
(Oakland, CA, May 2015), USENIX Association, pp. 439–453.

[14] Choi, B., Kim, J., Cho, D., Kim, S., and Han, D. Appx: an automated app accelera-
tion framework for low latency mobile app. In Proceedings of the 14th International
Conference on emerging Networking EXperiments and Technologies (2018), ACM,
pp. 27–40.

[15] Fielding, R., and Reschke, J. Rfc 7231-hypertext transfer protocol (http/1.1):
Semantics and content. Internet Engineering Task Force (IETF) (2014). https:
//tools.ietf.org/html/rfc7231.

[16] Gerber, A., andDoverspike, R. Traffic types and growth in backbone networks. In
Optical Fiber Communication Conference/National Fiber Optic Engineers Conference
2011 (2011), Optical Society of America.

[17] Higgins, B. D., Flinn, J., Giuli, T. J., Noble, B., Peplin, C., and Watson, D.
Informed mobile prefetching. In Proceedings of the 10th international conference
on Mobile systems, applications, and services (2012), ACM, pp. 155–168.

[18] Kline, J., Barford, P., Cahn, A., and Sommers, J. On the structure and char-
acteristics of user agent string. In Proceedings of the 2017 Internet Measurement
Conference (New York, NY, USA, 2017), IMC ’17, ACM, pp. 184–190.

[19] Miskovic, S., Lee, G. M., Liao, Y., and Baldi, M. Appprint: automatic finger-
printing of mobile applications in network traffic. In International Conference on
Passive and Active Network Measurement (2015), Springer, pp. 57–69.

[20] Nejati, J., and Balasubramanian, A. An in-depth study of mobile browser
performance. In Proceedings of the 25th International Conference on World Wide
Web (2016), International World Wide Web Conferences Steering Committee,
pp. 1305–1315.

[21] Netravali, R., and Mickens, J. Prophecy: Accelerating mobile page loads using
final-state write logs. In 15th USENIX Symposium on Networked Systems Design
and Implementation (NSDI 18) (Renton, WA, Apr. 2018), USENIX Association,
pp. 249–266.

[22] Nygren, E., Sitaraman, R. K., and Sun, J. The Akamai network: A platform for
high-performance internet applications. ACM SIGOPS Operating Systems Review
44, 3 (2010), 2–19.

[23] Poese, I., Frank, B., Smaragdakis, G., Uhlig, S., Feldmann, A., and Maggs, B.
Enabling content-aware traffic engineering. ACM SIGCOMM Computer Communi-
cation Review 42, 5 (2012), 21–28.

[24] Pujol, E., Richter, P., Chandrasekaran, B., Smaragdakis, G., Feldmann, A.,
Maggs, B. M., and Ng, K.-C. Back-office web traffic on the internet. In Proceedings
of the 2014 Conference on Internet Measurement Conference (2014), ACM, pp. 257–
270.

[25] Richter, P., Padmanabhan, R., Spring, N., Berger, A., and CLark, D. Advancing
the Art of Internet Edge Outage Detection. In Proceedings of ACM IMC 2018 (Boston,
MA, November 2018).

[26] Richter, P., Padmanabhan, R., Spring, N., Berger, A., and Clark, D. Advancing
the art of internet edge outage detection. In Proceedings of the Internet Measurement
Conference 2018 (2018), ACM, pp. 350–363.

[27] Sivakumar, A., Puzhavakath Narayanan, S., Gopalakrishnan, V., Lee, S., Rao,
S., and Sen, S. Parcel: Proxy assisted browsing in cellular networks for energy
and latency reduction. In Proceedings of the 10th ACM International on Conference
on Emerging Networking Experiments and Technologies (New York, NY, USA, 2014),
CoNEXT ’14, ACM, pp. 325–336.

[28] Trevisan, M., Giordano, D., Drago, I., Mellia, M., and Munafo, M. Five years
at the edge: watching internet from the isp network. In Proceedings of the 14th
International Conference on Emerging Networking EXperiments and Technologies
(2018), ACM, pp. 1–12.

[29] Vlachos, M., Yu, P., and Castelli, V. On periodicity detection and structural
periodic similarity. In Proceedings of the 2005 SIAM international conference on
data mining (2005), SIAM, pp. 449–460.

[30] Wang, X. S., Balasubramanian, A., Krishnamurthy, A., and Wetherall, D.
Demystifying page load performance with WProf. In Presented as part of the 10th
USENIX Symposium on Networked Systems Design and Implementation (NSDI 13)
(Lombard, IL, 2013), USENIX, pp. 473–485.

[31] Wang, X. S., Krishnamurthy, A., and Wetherall, D. Speeding up web page
loads with shandian. In 13th USENIX Symposium on Networked Systems Design and
Implementation (NSDI 16) (Santa Clara, CA, 2016), USENIX Association, pp. 109–
122.

[32] Xu, Q., Andrews, T., Liao, Y., Miskovic, S., Mao, Z. M., Baldi, M., and Nucci,
A. Flowr: a self-learning system for classifying mobileapplication traffic. ACM
SIGMETRICS Performance Evaluation Review 42, 1 (2014), 569–570.

[33] Xu, Q., Erman, J., Gerber, A., Mao, Z., Pang, J., and Venkataraman, S. Identify-
ing diverse usage behaviors of smartphone apps. In Proceedings of the 2011 ACM
SIGCOMM conference on Internet measurement conference (2011), ACM, pp. 329–
344.

[34] Yao, H., Ranjan, G., Tongaonkar, A., Liao, Y., andMao, Z. M. Samples: Self adap-
tive mining of persistent lexical snippets for classifying mobile application traffic.
In Proceedings of the 21st Annual International Conference on Mobile Computing
and Networking (2015), ACM, pp. 439–451.

[35] Zhao, Y., Laser, M. S., Lyu, Y., and Medvidovic, N. Leveraging program analysis
to reduce user-perceived latency in mobile applications. In Proceedings of the 40th
International Conference on Software Engineering (2018), ACM, pp. 176–186.

201

