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Detecting botnet behaviors in networks is a popular topic in the current research literature.
The problem of detection of P2P botnets has been denounced as one of the most difficult
ones, and this is even sounder when botnets use existing P2P networks infrastructure (par-
asite P2P botnets). The majority of the detection proposals available at present are based on
monitoring network traffic to determine the potential existence of command-and-control
communications (C&C) between the bots and the botmaster. As a different and novel
approach, this paper introduces a detection scheme which is based on modeling the evo-
lution of the number of peers sharing a resource in a P2P network over time. This allows
to detect abnormal behaviors associated to parasite P2P botnet resources in this kind of
environments. We perform extensive experiments on Mainline network, from which
promising detection results are obtained while patterns of parasite botnets are tentatively
discovered.

� 2014 Elsevier B.V. All rights reserved.
1. Introduction

Botnets constitute a serious security flaw for systems,
services and users, as they are a principal infection vector
for spreading malware as well as a main supporting tool
for several other kinds of attacks and malicious behaviors
(e.g., DDoS, spam) [1,2].

Among some other kinds of botnets, parasite botnets
are of special relevance because they rely their operation
on the use of an already existing communications infra-
structure. This is the case of parasite botnets on P2P net-
works, where the activity of the botnet is easily hidden
inside the usually high amount of traffic and activity in
the underlying P2P network [3,4].
Most of proposals on botnets detection are oriented to
introduce some kind of scheme to detect botnet com-
mand-and-control (C&C) activity [5]. However, a main lim-
itation of this approach is the usual excessive specificity
involved in representing the corresponding traffic. Since
C&C network traffic is quite mutable and easy to obfuscate,
models should be built for every specific botnet. In addi-
tion, these proposals require a high amount of traffic
observations to derive adequate behavioral models to
characterize the botnet activity. Obtaining representative
and real traces of the traffic generated by a certain botnet
is quite a hard task, and trying to reproduce it in a
controlled environment always involves risks [6].

In P2P botnets, C&C communications are done through
the exchange of resources shared by nodes in the network.
For example, the botmaster of a P2P parasite botnet can
create a file composed of bot commands and shares it with
the bots. Every bot that downloads the file subsequently
shares it again with other bots. Note that here, C&C
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communications are not different from file download traf-
fic and, for this reason, it is not trivial to build a detection
system based on monitoring the network traffic.

This paper introduces a novel approach to detect para-
site P2P botnets, which is based on resource sharing
behavior monitoring instead of network traffic monitoring.
Specifically, we are interested in the temporal evolution of
the amount of peers sharing a given resource in the net-
work. This way, a model for the normal behavior of tempo-
ral resource sharing in P2P networks is first obtained. As a
complementary study of this behavioral model, and based
on common constraints that botmasters should comply for
the design of a botnet, a theoretical model for the expected
behavior in botnet resource sharing is also proposed. From
both, the detection of potentially anomalous, botnet
resource sharing in a P2P network and their associated
bots are finally identified.

Summarizing, the contributions of this paper are
threefold:

� A methodology for building a temporal resource sharing
model to represent the normal behavior of a P2P
network.
� A theoretical model for botnet resources sharing and,

based on it, a simple generator of parasite botnet traffic.
� A detection architecture to determine the occurrence of

parasite botnet events in P2P networks.

As a case study, and mainly motivated by its wide cur-
rent use, we present extensive experiments to test our
architecture in a real Mainline network (BitTorrent),
obtaining promising detection results. In particular, differ-
ent patterns of use of parasite botnets are tentatively
discovered.

According to the abovementioned main aspects, the rest
of the paper is organized as follows. Section 2 is devoted to
present some related work on the topic of botnets and
detection of botnets. Section 3 analyzes the way in which
network resources are parameterized to model the nor-
mality of the target environment. Moreover, a theoretical
model for the expected behavior of resource exchanges in
botnets is also discussed. A module for monitoring time
evolutions of resources in Mainline network is presented
in Section 4. After that, and based on it, the overall func-
tional architecture for the detection system proposed is
detailed in Section 5. Section 6 describes the experimental
framework used to evaluate the detection scheme and the
results obtained. Finally, Section 7 summarizes the main
conclusions of the paper.
2. Related work

A botnet is a network of infected machines under the
control of a human operator. Two main components can
be found within a botnet: the bots and the botmaster.
Infected machines are called bots, which follow the
instructions given by the human operator, the botmaster.
The botnet is controlled through the transmission of C&C
messages among its members. C&C channels must be estab-
lished. In some cases, bots connect to a C&C server in order
to receive the messages sent by the botmaster. The exis-
tence of this server and the architecture of the C&C com-
munications depend on the botnet’s own architecture.

The transmission of the C&C messages can be central-
ized, distributed or hybrid. In a centralized scheme, bots con-
tact the C&C server in order to receive information from
the botmaster. In general, short time is spent in the trans-
mission of a message from the botmaster to all the bots,
and this represents one of the major advantages of this
scheme. Its disadvantage is the fact that the C&C server
constitutes a single point of failure. Thus, if the server shuts
down, the complete network is dismantled. Examples of
centralized botnets include Eggdrop [7], Gt-Bot and Agobot
[8].

In a distributed architecture, all the bots in the botnet
act simultaneously as servers and clients. This approach
avoids the existence of a single point of failure, and so this
kind of botnet is more resistant to take down attempts
than a centralized one. However, the time required for a
message to reach all the nodes is much greater than in
the centralized case. Many botnets present a distributed
structure, including Spybot [9] and Storm [10].

Finally, hybrid botnets combine the advantages of the
two previous architectures. In this case, there exist one
or more distributed networks, each with one or more cen-
tralized servers. The disconnection of one of these servers
implies, in the worst case, the fall of one of the distributed
networks, allowing the rest of the botnet to continue its
normal operation. Some examples of hybrid botnets are
Torpig [11], Waledac [12], Alureon/TDL4 [13] and Zeus-
P2P [14].

Parasite botnets are a particularly harmful. They can be
either hybrid or distributed. These botnets act as a parasite
benefiting from existing communication infrastructures. In
a parasite P2P botnet, an existent and legitimate P2P net-
work is used to send C&C messages. It is specially hard to
detect these types of botnets because their control mes-
sages are well hidden between the legitimate messages
of the network. There exist two known parasite botnets:
Storm [10], and a specific evolution of Alureon [15]. Both
of them are now dismantled and they communicated
through Kad (an implementation of Kademlia DHT for
eDonkey network). These type of botnets are the aim of
detection of our proposed detection system.

A considerable amount of work has been dedicated to
the analysis [16–19] and detection [20–29] of botnets.
From a network perspective, existing techniques are either
based on horizontal or vertical correlation. The first cate-
gory focuses on finding similarities between the behavior
of infected hosts, while the second one focuses on the
property of the traffic generated by a single host.

Looking closely at P2P botnet detection, only a handful
of techniques has been proposed so far. Yen and Reiter [30]
proposed the use of three main features (traffic volume,
churn, and temporal patters) to tell filesharing and P2P
botnets apart. Zhang et al. [31] used a statistical fingerprint
to profile different types of P2P traffic and distinguish the
benign from the malicious ones. Coskun et al. [32] showed
how infected machines in a network can be discovered
once a single P2P infected node is discovered. Similarly,
[33] identified infected machines by looking at the
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communication patterns from the traffic observed by one
(or multiple) ISPs. Finally, PeerRush [34] proposed a P2P
traffic categorization approach that can be used to identify
different known types of legitimate and malicious P2P
traffic.

Our approach differs from the previous ones because
we do not perform our analysis on the network traffic,
but we study the ‘‘behavior’’ of the shared resources in
the P2P infrastructure. Moreover, we put ourself in a
worst-case scenario in which the botnet does not use a
custom P2P protocol but it hides its traffic in an existing
one (parasite botnet).
3. A model of resource sharing in P2P networks

The main intuition behind our proposal is the fact that
resources shared by legitimate users in a P2P network
(legitimate resources) will be accessed in a different way
than resources shared by nodes belonging to a botnet (bot-
net resources). For this reason, we are interested in building
models for both legitimate and botnet resources. Then, we
will suggest a detection architecture that relies on these
models to detect botnet resources in P2P networks.

Our models are based on the evolution of the number of
P2P nodes that share a specific resource over time. This way,
let nrðkÞ be the number of nodes sharing a resource r
during a period of time of duration d which ends at
k � d; k ¼ 1; . . . ;K .

In Section 4 we detail a methodology for the estimation
of nrðkÞ. Following it, we have monitored 71,135 resources
in the Mainline network during 3 months (see details in
Section 6), observing that there are different patterns in
the evolution of nrðkÞ. As a first classification, we have
found that there are resources that, at least during a period
of time, have been shared by a large amount of nodes. Let
us denote them as popular resources. We define a popular-
ity threshold, hP , such that a given resource will be consid-
ered popular only if there exists a value k; k ¼ 1; . . . ;K , for
which nrðkÞ > hP . In Section 5 we specify how hP is
determined.

We are specially interested in modeling popular
resources, mainly because we expect that botnet resources
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Fig. 1. Sharing evolution, nrðkÞ for a typical legitimate P2P resource
(d = 1 h).
will belong to this category. Fig. 1 shows the evolution of
nrðkÞ for a typical popular resource (d ¼ 1 h). In the figure,
we observe that the evolution of nrðkÞ has two separate
parts. At the beginning, the peers start downloading and
sharing the resource, reaching a period in which the
resource is shared by many peers. After that, the interest
decreases slowly until the resource is no longer shared.
Let us call the first period sharing phase and the second
disappearing phase.

Based on the behavior of nrðkÞ for legitimate popular
P2P resources, our main hypothesis is that nrðkÞ will differ
substantially from these patterns when r represents a bot-
net resource. This means that the detection of potential
botnet resources would be possible by monitoring nrðkÞ
and detecting deviations from the expected temporal shar-
ing behavior. The key problem to verify this hypothesis is
that it is not possible to use experimental traces from bot-
net resources. To the best of our knowledge, nowadays
there are no real active parasite botnets reported, possibly
due to the fact that it is extremely difficult to detect them
by existing methods. For this reason, our strategy is to
build a theoretical model for the sharing evolution of
botnet resources, assuming that botmasters must follow
certain rules to maintain and operate their botnets. Here,
it is important to consider two properties that could not
be circumvented by botmasters without degrading botnets
behavior or exposing them to active detection
mechanisms:

1. Botnet resources must be popular resources. Botnets
are composed of a huge number of bots or peers [35].
When botmasters update the bot code or send com-
mands, all the bots must download a given botnet
resource which contains those commands or updates.
This implies that a large number of downloads will be
observed for that botnet resource. Thus, we will not
consider small size botnets, as their threat would not
be significant, at least in a first step.
At this point, we must remark that the condition of
being popular is not strictly necessary, as a botmaster
might bypass a popular resource-based detection pro-
cess by creating different files for groups of bots,
instead of a single file for all of them. However, the
increasing number of simultaneous new resources in
the network can also be adopted as an alarm basis for
the occurrence of anomalous behaviors. Therefore, and
although not unique, we will continue assuming the
resource popularity as a valid criterion for our detection
approach.

2. Botnet resources must have a short life-time. The
period of time during which a botnet resource is being
shared should be short, due to the fact that this file is
directly pointing to all the members of the botnet,
exposing them to known detection systems [31,36].
Additionally, commands from the botmaster are very
frequents and a bot should always be updated with
the last commands.

These two rules imply that, during the sharing phase of a
botnet resource, all the bots that download it also share it
to assure that it is accessed by the whole botnet. Thus,
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during this phase, a high level of popularity is expected. On
the other hand, and just to minimize the probability of
been discovered by detection mechanisms, it is expected
a disappearing phase in which all the bots will stop sharing
the botnet resource in a short period of time. The evolution
of these phases will depend considerably on several fac-
tors, so that our theoretical model consider these
parameters:

� Number of bots of a parasite botnet, N. We consider in our
approach high values for N, as otherwise the botnet
threat would not be considerable.
� Mean duration of the sharing phase of botnet resources, tsh.

As previously discussed, it is expected that this time
will be low.
� Mean bot arrival and leaving rates, k. As some works

point out [37], the arrivals and leavings of members in
a botnet follow Poisson distributions, k representing
the mean value for these distributions. Moreover, as
previously claimed, the transition from the sharing
phase to the disappearing phase is expected to be sharp,
or at least sharper than in the case of legitimate
resources.
� Disappearing interval. The order from the botmaster for

not sharing a botnet resource anymore should spread
across the whole botnet. Due to deviations in the
synchronization of bots, a short disappearing interval
is expected. We model this interval as an uniform distri-
bution U½0;D�.

Following our model, in Fig. 2 we show the evolution of
nrðkÞ for some examples of botnet resources with different
parameters. Note that the main difference between the
evolution of nrðkÞ for a legitimate and a botnet resource
is around the instant tsh, where nrðkÞ falls abruptly
(compare Figs. 1 and 2). This motivates us to build a
detection system based on monitoring the evolution of
nrðkÞ in order to identify potential botnet resources.
4. Resource monitoring in a P2P network

This Section describes the methodology proposed to
estimate the normality model of our P2P network and,
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Fig. 2. Time evolution of different synthetic updates of a parasite botnet
(d = 1 h).
from that, to detect subsequent potential anomalous
behaviors. In both cases, a previous monitoring process is
required to determine the P2P resources shared by peers
in our environment over time, that is nrðkÞ. Such a monitor-
ing is described in what follows, for which a BitTorrent net-
work is considered, as it is one of the most used P2P
network at present [38]. Traditionally, BitTorrent employs
trackers in order to coordinate file exchanges. Recently,
BitTorrent introduced decentralized tracking, a feature that
enables any peer to act as a tracker, by means of a Distrib-
uted Hash Table (DHT). This new protocol is based on
Mainline network [39] and we focus our monitoring pro-
cess on it. In the following we present a brief description
of the Mainline basics and, after that, we explain the
resource monitoring module.
4.1. Mainline basics

In Mainline, every node has a global identifier (node ID)
randomly generated with a size of 160 bits the first time
that a new client starts the BitTorrent application. This
way, it can be assumed the node ID as a unique identifier
per client even in the case that this client changes its IP
address. Additionally, each resource shared through Main-
line has also a unique identifier (file ID) with the same size
of the node ID, 160 bits. This identifier is generated as a
result of a hash function of the shared resource. To com-
pute the distance between two different node IDs, or a
node ID and a file ID, a distance metric is used. This metric
is an XOR operation. It is assumed that higher values of this
metric imply higher values of distance.

Summarizing, users with node IDs close to a specific file
ID are in charge of saving the information about which
nodes in the network have a copy or a part of this file.
Therefore, if a node tries to find a file in particular, it uses
the XOR operation to find in its routing table node IDs close
to the associated file ID. Then, it contacts those nodes
requesting a list of nodes sharing the target file. If the con-
tacted nodes have the requested information they will
return it. Otherwise, the contacted nodes answer with a list
of nodes closer to the file in their routing tables. This way,
the requesting node iteratively approaches the destination
file ID.

In the following we present the most relevant remote
procedure calls available in the Mainline DHT for our work.
For more details, please refer to [39].

� ping verifies if a peer is alive and responsive.
� find_node requests the closest peers to a hash value I

in order to update the routing tables of the requesting
peer. A peer responds to a find node message with the
IP addresses, ports, and node IDs of the peers whose
node IDs are the closest ones to I in its routing table.
� announce_peer, announces that a peer holds a file (or a

portion of it) with info hash I. A peer sends announce_
peer messages to the k peers whose node IDs are the
closest ones to I. This information expires after a time-
out that depends on the client implementation (around
30 min). The announcing peer is responsible for
re-announcing the tuple hIP:port,Ii over time.
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4.2. Resource monitor

Our monitoring system is composed of two modules:
(a) a node crawler, and (b) a message sniffer.

� Node crawler. This module is based on the work in
[38,40]. Two asynchronous threads are always running
in the crawler: one in charge of sending find_node
messages, Sthread, and the other in charge of receiving
and processing the associated answers, Rthread. A list con-
taining the found nodes is shared between the threads.
Rthread adds every found node to this list, while Sthread

sends iteratively find_node messages to each member
of the list, each one with a different ID. It is important to
note that this ID is carefully chosen so that it belongs to
a different section of the route tree of the nodes. This
way, the overlapping of the group of received nodes is
minimized.

By using this crawler, we can extract the information
of the whole Mainline network in around 40 min. It is
also possible to crawl only a specific zone of the
network with a certain prefix. For example, for 8 bits
prefix all the active nodes in the network which ID
begins with the same 8 bits are found. This process,
which can extract 1/256 of the total active nodes in
the network, can be done in less than 1 min.
� Message sniffer. This module is based on the work in [38]

slightly adapted to our case. We include a huge amount
of sybil nodes in a specific zone of the DHT. These sybils
are capable of logging all the messages sent to the active
nodes in the target zone. The node IDs are near to those
of the active nodes obtained in the previous crawling
process.

Let n be an active node in the monitoring zone, and
IDn its ID. The sniffer module inserts 256 sybils with
the same first 47 bits of IDn. The probability of the exis-
tence of a node with an ID closer than that of one of our
sybils is extremely low. The sybil IDs are generated by
varying the bits of the ID comprised between the 48th
and the 56th position, i.e., 8 bits are considered to
obtain 256 different IDs. To include these sybils in the
DHT we notify the existence of the sybils to the active
nodes near the target n. Then, these nodes will spread
their route information to their neighbors.

In summary, the resource monitoring procedure works
as follows. First, the nodes of a specific zone of the DHT
are obtained using the crawling module. After that, a huge
amount of ping messages are sent to them with source IDs
near to those of the active nodes in the zone. This way, we
launch a pollution attack to the routing tables of these
nodes including our sybil nodes as neighbors. After that,
a message is sent to any of our sybils to reach active nodes
in the monitored zone. Second, all the announce_peer
messages sent to this zone are logged. These are the mes-
sages sent by the nodes that really have a physical copy of
the shared resource. For each announce_peer message we
save the ID of the announced resource, the IP, port and ID
of the announcer node, and the timestamp of the arrival
instant of the message. As a result of this process, for every
monitored resource r and a set of intervals of duration d
seconds, nrðkÞ is computed.

Note that although we include a huge number of sybils
in the network they only suppose an increment of some
ping and announce_peer messages per real node of the
monitored zone of Mainline. We could say, that the
monitoring process has no real influence on the behavior
of the peers in the monitored zone.
5. Resource-based botnet detection: architecture and
operation

Based on the models presented in Section 3, our aim is
to build now a detection system able to monitor nrðkÞ for
the different resources in a P2P network, and detect
potential botnet resources patterns.

The architecture of our proposal for a resource-based
botnet detection system is shown in Fig. 3. The data from
the resource monitoring system (described in Section 4)
is feeded into our system, where the three typical stages
are considered:

� Preprocessing. Both the training and detection processes
require a previous common stage to preprocess the data
given by the resources monitoring system.
� Training. First, a normality model is built to represent

the sharing evolution of legitimate resources in the
monitored P2P network.
� Detection. Once the model is obtained, every resource

shared in the P2P network is analyzed in quasi-real
time, in order to determine potential deviations with
respect to the expected behavior. In such a case, an
alarm is triggered indicating the detection of a
malicious, botnet resource.

In what follows, each of the stages is discussed.

5.1. Preprocessing

As a first step, every monitored resource r is
represented by a time series vector nr:

nr ¼ ½nrð1Þ;nrð2Þ; . . . ;nrðKÞ� ð1Þ

where nrðkÞ represents the number of peers that share a
resource r in the k-th observed period of duration d for a
monitoring interval T ¼ K � d. Every sample nrðkÞ received
from the resource monitoring system is added to nr , so that
nr really represents the time series evolution of the num-
ber of peers sharing r. We say that a vector nr is complete
when nrðkÞ ¼ 0; k > K.

After building nr , a low pass filtering is performed to
reduce spikes in the time series. These spikes are mainly
due to the high churn of P2P networks, i.e. rate of node con-
nections and disconnections. For instance, if a monitored
resource r is shared by nodes from the same geographical
zone, nr will exhibit a period around 24 h because of
computer disconnections during the night.

For every point in the time series nr , the filtering is
made taking the maximum value within a window of size
W (being W an odd number). The resulting window is
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composed of a number of intervals of duration d centered
at interval k. This way, we obtain a new time series n̂r ,
where

n̂rðkÞ ¼ maxifnrðiÞg; i ¼ k�W � 1
2

; . . . ; kþW � 1
2

ð2Þ

Fig. 4 shows the result of such a filtering in a sample
popular resource. As expected the time evolution is
smoothed, what will avoid potential errors in subsequent
analysis stages.

5.2. Training

The aim of this module is to estimate a normality model
associated to the temporal evolution of the resources
shared in the network monitored.

Resource database. First, a database with the evolution
of all the shared resources in the monitored network is col-
lected, each one being represented by a complete vector n̂r .

Legitimate resources filtering. As we are interested in
modeling the behavior of legitimate resources, we must
collect only those resources. In other case, incorrect
‘‘normality’’ models would be derived. For this purpose, dif-
ferent strategies could be followed. The naive approach is to
download the resource and check if the contents are legiti-
mate or not. An automated alternative could be followed by
checking for certain information about the resources IDs in
webs or blogs, e.g., http://btdigg.org/ or http://torrentz.eu/.
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Fig. 4. Time evolution of a resource and the corresponding maximum
filtering (d = 1 h).
We could assume the existence of feedback from users in
these webs as a proof to consider the resource as legitimate
and not a botnet resource.

Fall threshold. As we are interested in identifying those
resources that exhibit during a short period of time a high
fall in the number of peers that share them (signature of
botnet resources), we will identify the maximum negative
difference between two consecutive values in n̂r for every
resource r; Fr:

Fr ¼ jminkfn̂rðkÞ � n̂rðk� 1Þgj; k ¼ 2; . . . ;K ð3Þ

Then, the fall threshold, Fth, is obtained as a portion a
over the maximum fall for all the resources:

Fth ¼ a �maxrfFrg; 8r ð4Þ

Note that the value of a will modify the sensitivity of
our system. A low value for a will imply a high false posi-
tives rate, while high values of a lead to low detection
accuracy results. In Section 6 we explore ROC curves for
this parameter.

Popularity threshold. As indicated along the paper,
only popular resources are going to be analyzed by our sys-
tem, as we claim that botnet resources are shared among a
huge number of nodes. The selection of the value for the
popularity threshold, hP , could be a difficult task in a gen-
eric application. Luckily, our case is different as we are
really interested in detecting falls greater than Fth, what
necessarily means that there exists a value k in the
resource r for which n̂rðkÞP Fth. For this reason, we take
hP ¼ Fth and filter those resources that fulfill this condition:

maxkfnrðkÞgP hP ; k ¼ 1; . . . ;K ð5Þ
5.3. Detection

The last stage of the detection system is that of deter-
mining the normal or anomalous nature of each new input
observation taken from the resource monitoring system
and preprocessed, n̂r .

The core of the detection system corresponds to the
module of abnormal fall detection. Here, Fr is obtained from
Eq. (3) for every observed resource r, and it is compared to
the fall threshold, Fth, to decide if r is legitimate or a botnet
resource.

Fr 6 Fth legitimate resource
Fr > Fth botnet resource

�
ð6Þ

http://btdigg.org/
http://torrentz.eu/
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Note that, for the sake of increasing the performance of
our system, before the abnormal fall detection module, we
filter popular resources according to the corresponding
training stage, where hP ¼ Fth.
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6. Experimental evaluation

In this section we present experimental results
obtained from testing our hypotheses, and thus our
approach. First, we describe the data collected from the
Mainline network and analyze it in some aspects to show
how both legitimate and botnet resources behave. After
that, we evaluate the detection capabilities of our proposal,
showing tentative botnet patterns discovered by using it.
in Section 5.
Fig. 5. Maximum value of peers sharing resources, maxfnrðkÞg, for all the
monitored resources.

Table 1
Values for the parameters of the synthetic parasite
botnet resources.

Values

N 1.000–10.000
k 0.1, 0.3, 0.5
tsh 6 h to 1 week
D 0.1, 0.2, 0.3
6.1. Resource monitoring and preprocessing

Following the methodology explained in Section 4, we
have monitored all the shared resources of Mainline with
the same 8 bits prefix for the ID: ‘‘0x8C’’. Therefore we
have monitored 1/256 of the total Mainline network. We
consider that this portion of the network represents accu-
rately enough the behavior of the whole Mainline network.

The monitoring have been carried out during 3 months
in 2012, starting from April 4th until July 4th. During this
period a total of 71,135 resources shared by millions of
different IPs all over the world have been monitored. For
the sampling, we have chosen a period d = 1 h. For each d,
we have collected the following data per resource: the
number of different IPs sharing it, the number of different
node IDs, and nrðkÞ, that is, the number of messages of type
announce_peer.

We have focused only on those resources that started to
be shared during the monitoring period, as we want to
collect their complete time evolution. To identify these
resources, we firstly monitored during 2 weeks the target
zone of Mainline and, after that, we considered the new
resources not observed during this period of time. From
the total monitored resources, we identified 34,075 new
resources.

Fig. 5 shows the popularity of the monitored resources
in decreasing order, calculated as the maximum number
of peers that have shared a resource during intervals of
1 h of duration. Here, we can check that the top 10
resources have been shared by around a million of differ-
ent users in an hour. Moreover, it is important to notice
that there is a big amount of resources (27,083) whose
maximum number of users is one.

Just for the sake of a qualitative evaluation, let us con-
sider that a resource is popular if more than 70 user share
it in an hour. From our results, it can be seen that 344 of
the observed resources are shared by more than 70 differ-
ent users in an hour. If we suppose that the whole Mainline
network presents the same behavior as the monitored
zone, we will have 344 popular resources per zone, which
means more than 965 new popular resources per day in
the whole network. Obviously, this is a very high number,
but it is explained by the low threshold of users considered
for popularity in this example (only 70 users).
Finally, we have preprocessed the vectors nr following
Eq. (2) with W � d = 12 h. This size is big enough to diminish
the effect of the high churn of P2P networks, while small
enough to leave the proper fluctuations of the time evolu-
tion of resources. This way, n̂r is obtained.

6.2. Training and detection results

In order to make the training, we first identify those
resources that could be considered legitimate. This is done
by obtaining information published in well known sites
about the resources IDs and considering those that have a
good reputation from users. We have consulted four web-
sites: http://www.torrentkitty.com/, http://torrentproject.
com/, http://btdigg.org/ and http://torrentz.eu/. Out of the
34,075 resources, we have selected 14,869 resources which
are corroborated as legitimate.

Once obtained our training data set, we divide it into
four parts, so that a cross validation process is performed
by taking three partitions for training purposes and the
remaining one for testing. This way, four different experi-
ments are carried out, each one corresponding to the use
of one of the partitions for testing.

Additionally to the traces collected from Mainline,
42,000 synthetic bot resources following our model in
Section 3 are added to the test partition in each case. As
shown in Table 1, a wide range of different values for the
parameters of this model have been used. We have chosen
really low values of N in order to probe the detection
capabilities of our system with botnets of a reduced size.
Note that the popularity of botnet resources is not a critical
condition in our system, it affects more to the efficiency of
the system than to the detection results. The existence of

http://www.torrentkitty.com/
http://torrentproject.com/
http://torrentproject.com/
http://btdigg.org/
http://torrentz.eu/
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Fig. 7. Further detection experiments where new, previously unobserved
botnet events are tentatively detected.
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Fig. 8. Time evolutions of the three resources detected as abnormal
(d = 1 h).
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both legitimate and botnet resources in the test data
set allows to obtain a ROC curve representing the
performance of our detection system.

Following Eqs. (3) and (4), we obtain a ROC curve by
varying parameter a, from 0.01 to 2. This values of a
implies a popularity threshold (hP) from 6.26 to 1252
peers. We can see the resulting ROC in Fig. 6, which corre-
sponds to the average ROC from the four abovementioned
detection experiments in the cross-validation process.

As observed, a trade-off between false positives (FP) and
detection accuracy (DA) is necessary, as both have the
same tendency. This way, for low FP values also the values
of DA are reduced (DA around only 40% for FP = 0%). Any-
way, the overall detection behavior is good enough as a
value of DA equal to 98.64% is reached with only a false
positive rate lower than 0.3%.

From these results, we think that a really good opera-
tion point is that corresponding to a equal to 0.12
(DA � 99% and FP � 0.3%), as shown in the specialized lit-
erature on detection systems. On the other hand, values
of a equal to, or greater than 1.2 obtain FP rates equal to
zero, what also constitutes an adequate operation point
to minimize the number of alarms while being sure about
the malicious nature of the events detected.

6.3. Discovering botnet patterns

Once we have shown the performance of our detection
approach, we carried out further experiments to check the
system when new, unknown resources are observed and
once the detector is completely tuned.

For that, we use the remaining 19,206 resources
obtained in the monitoring process but not previously used
for training and testing our system. These resources could
correspond either to legitimate or to botnet resources, as
we only know that they are not explicitly recommended
as valid by users. Although the operation point to analyze
the target resources may be that corresponding to
(DA � 99%, FP � 0.3%), we have chosen a value of a = 1.2,
which achieves a theoretical false positive rate of 0%. This
is aimed to be very restrictive in generating alarms and,
if so, be sure about the malicious nature of the detected
events.
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Fig. 6. ROC for our detection system by varying a in Eq. (4).
Fig. 7 represents, for all the resources, the maximum
popularity reached, maxfnrðkÞg (y axis in log form), and
the fall obtained from Eq. (3) (x axis also in log form). Here,
the fall threshold Fth is also represented in dashed lines.
We can see that our system raises alarms for only three
of the monitored resources, which clearly behaves as
outliers.

Fig. 8 shows nr for these three resources. Here we can
check that all of them are shared by a large amount of peers
during a short period of time. Specifically, res1 reaches a
maximum of 523,883 users and the sharing phase of this
resource lasts less than 5 h. The same happens with res2,
with less but still significative number of peers (28,897).
Regarding res3, the duration of the sharing phase is longer,
but still very short (only 24 h), and the number of peers is
really significative (436,963). These behaviors are really
suspicious of being due to botnet resources sharing, as they
follow our model presented in Section 3.

7. Conclusions and future work

This paper presents a new detection approach to deter-
mine the occurrence of parasite botnet events in P2P
networks. The main novelty of our system is that it is based
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on resource monitoring instead of traffic monitoring. We
claim that normal P2P resources are shared in a different
way over time than those ones corresponding to botnet
communications.

First, we have developed a methodology for recovering
information about resources sharing patterns in a P2P net-
work. It has been tested in Mainline network and proved to
be feasible. Second, this monitoring system has allowed
the definition of models for both legitimate and botnet
resources sharing patterns. From them, a detection scheme
based on the high fall in the number of peers sharing a
given resource is developed.

As a proof of concept, the time evolution of resources of a
zone of the Mainline network have been collected to evaluate
the proposed detection approach. We show that our system
exhibits a very good performance in terms of false positives
(lower than 0.5%), and very high detection accuracy (higher
than 99%). We show how our system is able to monitor the
evolution of resources in real time, making the detection of
botnet resources in a P2P parasite network a real possibility.
Finally, the simplicity of the solution proposed makes it
adequate for its implementation in real systems.
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